Answer:
74%
Step-by-step explanation:
Multiply both the numerator and denominator by 2 so that you will have a number over 100. After doing this you will have 74/100 which is 74%
Answer:
We can find the individual probabilities:
And replacing we got:
![P(X \geq 5) = 1-[0.00114+0.009282+0.0358+0.0869+0.149]= 0.7178](https://tex.z-dn.net/?f=P%28X%20%5Cgeq%205%29%20%3D%201-%5B0.00114%2B0.009282%2B0.0358%2B0.0869%2B0.149%5D%3D%200.7178)
Step-by-step explanation:
Previous concepts
The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".
Solution to the problem
Let X the random variable of interest, on this case we now that:
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:
And we want to find this probability:

And we can use the complement rule:
We can find the individual probabilities:
And replacing we got:
![P(X \geq 5) = 1-[0.00114+0.009282+0.0358+0.0869+0.149]= 0.7178](https://tex.z-dn.net/?f=P%28X%20%5Cgeq%205%29%20%3D%201-%5B0.00114%2B0.009282%2B0.0358%2B0.0869%2B0.149%5D%3D%200.7178)
2%
take the absolute value of your (experimental-accepted then divide by the accepted) so (20-25)/25=.2
then multiply that number by 100 to get the percent, .2*100=2
Step-by-step explanation:
Xj + Xk/2 = Xm
7 + Xk/2 = 1
to get rid of the bracket, multiply all two sides by the denominator.
2(7 + Xk/2) = 1(2)
7 + Xk = 2
Xk = 2 - 7
Xk = -5
Yj + Yk/2 = Ym
2 + Yk/2 = -2
to get rid of the bracket, multiply all two sides by the denominator.
2(2 + Yk/2) = -2(2)
2 + Yk = -4
Yk = -4 - 2
Yk = -6
Therefore the coordinates of point K is (-5,-6)
Answer:
3.5x10^3
Step-by-step explanation:
3.5x10^2 = 350
350x10 = 3500
3500 = 3.5x10^3