Answer:
here it is
Step-by-step explanation:
Like terms:
1.4c, -2c, -7.3c
11.4 has no like terms
I believe this is how you do it
27.17 revolution per seconds
The domain of the composite function is given as follows:
[–3, 6) ∪ (6, ∞)
<h3>What is the composite function of f(x) and g(x)?</h3>
The composite function of f(x) and g(x) is given as follows:
![(f \circ g)(x) = f(g(x))](https://tex.z-dn.net/?f=%28f%20%5Ccirc%20g%29%28x%29%20%3D%20f%28g%28x%29%29)
In this problem, the functions are:
.
The composite function is of the given functions f(x) and g(x) is:
![f(g(x)) = f(\sqrt{x + 3}) = \frac{1}{\sqrt{x + 3} - 3}](https://tex.z-dn.net/?f=f%28g%28x%29%29%20%3D%20f%28%5Csqrt%7Bx%20%2B%203%7D%29%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%20%2B%203%7D%20-%203%7D)
The square root has to be non-negative, hence the restriction relative to the square root is found as follows:
![x + 3 \geq 0](https://tex.z-dn.net/?f=x%20%2B%203%20%5Cgeq%200)
![x \geq -3](https://tex.z-dn.net/?f=x%20%5Cgeq%20-3)
The denominator cannot be zero, hence the restriction relative to the denominator is found as follows:
![\sqrt{x + 3} - 3 \neq 0](https://tex.z-dn.net/?f=%5Csqrt%7Bx%20%2B%203%7D%20-%203%20%5Cneq%200)
![\sqrt{x + 3} \neq 3](https://tex.z-dn.net/?f=%5Csqrt%7Bx%20%2B%203%7D%20%5Cneq%203)
![(\sqrt{x + 3})^2 \neq 3^2](https://tex.z-dn.net/?f=%28%5Csqrt%7Bx%20%2B%203%7D%29%5E2%20%5Cneq%203%5E2)
![x + 3 \neq 9](https://tex.z-dn.net/?f=x%20%2B%203%20%5Cneq%209)
![x \neq 6](https://tex.z-dn.net/?f=x%20%5Cneq%206)
Hence, from the restrictions above, of functions f(x), g(x) and the composite function, the domain is:
[–3, 6) ∪ (6, ∞)
More can be learned about composite functions at brainly.com/question/13502804
#SPJ1