I don't know. But I know how to find it. Let's work it out together:
<u>5x = 2x + 20</u>
Subtract 2x from each side: 3x = 20
Divide each side by 3 : <em>x = 20/3</em> or ( 6 and 2/3 ).
Answer:
for my opinion, i think yo should try, i agree.
Step-by-step explanation:
Answer:
![W=\{\left[\begin{array}{ccc}a+2b\\b\\-3a\end{array}\right]: a,b\in\mathbb{R} \}](https://tex.z-dn.net/?f=W%3D%5C%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%2B2b%5C%5Cb%5C%5C-3a%5Cend%7Barray%7D%5Cright%5D%3A%20a%2Cb%5Cin%5Cmathbb%7BR%7D%20%5C%7D)
Observe that if the vector
is in W then it satisfies:
![\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{c}a+2b\\b\\-3a\end{array}\right]=a\left[\begin{array}{c}1\\0\\-3\end{array}\right]+b\left[\begin{array}{c}2\\1\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Da%2B2b%5C%5Cb%5C%5C-3a%5Cend%7Barray%7D%5Cright%5D%3Da%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C0%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%2Bb%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
This means that each vector in W can be expressed as a linear combination of the vectors ![\left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}2\\1\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C0%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%2C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Also we can see that those vectors are linear independent. Then the set
is a basis for W and the dimension of W is 2.
Answer:
Step-by-step explanation:
Answer:
x=2 y=-5
Step-by-step explanation:
7x-y=19
2x-3y=19
Multiply the first equation by -3
-3(7x-y)=19*-3
-21x +3y =-57
Add this to the second equation to eliminate y
-21x +3y =-57
2x-3y=19
-----------------------
-19x = -38
Divide by -19
-19x/-19 = -38/-19
x = 2
Now we need to find y
7x-y = 19
7(2) -y =19
14 -y =19
Subtract 14 from each side
14-14 -y=19-14
-y=5
Multiply by -1
y = -5