1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kaheart [24]
3 years ago
9

Algebra 1 pls ty! Brainilest if correct!

Mathematics
1 answer:
Elodia [21]3 years ago
7 0
The answer would be 3
You might be interested in
What’s the answer ?
elena-14-01-66 [18.8K]

Answer:

It is 9x^3.

Step-by-step explanation:

36x^4 and 45x^3.

GCF of 36 and 45 = 9

GCF of x^4 and x^3 = x^3

GCF of 36x^4 and 45x^2 = 9x^3.

7 0
3 years ago
Justin bought a 20 pound pumpkin for $9.80. Kyle bought a 5 pound pumpkin for $2.60. Who got a better deal on their pumpkin? Be
sveta [45]

20-9.80=?

5.-2.60=?

Find out. Solve them.

6 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
What is the distance from J to K?
vlada-n [284]

Answer:

A. 13 units is the answer

pls subscribe my channel

https://youtu.be/RTFkRTT0EUY

5 0
3 years ago
Read 2 more answers
Enteroliths are calcifications that form in the gut of a horse. The stones can cause considerable morbidity and mortality. A stu
juin [17]

Answer:

A. mean=14.29

median=16

B. IQR=10

C.   option 3

D. 5.91

Step-by-step explanation:

mean=sum of values/number of values=10+20+4+13+21+16+16/7=14.29

median is achieved by arranging data in increasing order and then calculating the middle value

4 10 13 16 16 20 21

The mid value is 16 so the median=16

IQR=interquartile range=3rd quartile-1st quartile=Q3-Q1=20-10=10

As n/4=7/4 is not an integer so

Q1=(n/4+1)value=(7/4+1)=2.75=2nd value=10

Q3=(3n/4+1)value=6.25=6th value=20

Standard deviation=s=sqrt(∑(x-xbar)²/n-1)=sqrt(209.43/6)=5.91

7 0
3 years ago
Other questions:
  • Here are some prices customers paid for different items at a farmer’s market. Find the cost for 1 pound of each item.
    14·1 answer
  • Which expression shows the distance on the number line between −12 and −1 ?
    8·1 answer
  • Among all pairs of numbers (x,y) such that 3x+y=15, find the pair for which the sum of squares, x^2+y^2, is minimum. Write your
    12·1 answer
  • A carpenter needs to cut four sections, each 3–feet 8–inches long, from a piece of molding. If the board is only sold by the foo
    6·1 answer
  • 5(3y - 1) - 3(2y) = 19​
    7·1 answer
  • Write two expressions where the solution is 30
    13·2 answers
  • It costs Sally 20 cents to make a cup of lemonade, and she sells each cup for 50 cents. She is using the following identity to c
    13·1 answer
  • Ben and Cam are scuba diving. Ben is 15.815.815, point, 8 meters below the surface of the water. Cam is 4.24.24, point, 2 meters
    15·1 answer
  • There are 12 third-grade students and 15 fourth-grade students in the band.
    6·2 answers
  • Match the base to the corresponding height​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!