Answer:
Carbon dioxide and oxygen are recycled through photosynthesis and cellular
respiration forever unless something interrupts.
Explanation:
Photosynthesis and cellular respiration are two distinct and opposite metabolical processes undergone by living cells. They are opposite processes because one utilizes the products of the other as reactants.
Photosynthesis is a unique process to autotrophic organisms like plants. It is the process whereby plants synthesize their food in form of organic molecules (glucose) by combining Carbondioxide (CO2) and water (H2O) in the presence of sunlight.
The overall equation of photosynthesis is as follows:
6CO2 + 6H2O ------> C6H12O6+ 6O2
On the other hand, cellular respiration is the process whereby living cells obtain energy (ATP) by breaking down food molecules (glucose) using oxygen to produce carbondioxide (CO2) and water as products. The overall equation is:
C6H12O6 + 602 -----> 6CO2 + 6H2O
Based on the lab experiments, it can be concluded that Carbon dioxide and oxygen are recycled through photosynthesis and cellular
respiration because photosynthesis recycles/reuses the products of cellular respiration, which are C02 and H2O while cellular respiration recycles/reuses the products of photosynthesis, which are C6H12O6 and O2. This process occurs naturally in the environment and will continue to do so unless something interupts.
Option B is incorrect because light energy from the sun powers photosynthesis while option C is incorrect because photosynthesis transforms light energy to chemical energy while cellular respiration transforms chemical energy to thermal energy.
Answer and explanation;
-A diverse community would be more resistant to disease, predation, and invasion because it would be a bigger diversity of genes, which means that the chance of disease would be more likely to spread in a different area than in a diverse population.
-Diversity is expected to increase the resilience of ecosystems. A diverse community would be more resistant to disease because of simple biology. The more sources for possible resistance the better the heterogeneous pool will be at resisting disease.
-High diversity strengthens a community and prevents invasion of the introduced predator. After a gradual loss of native species, the introduced predator can escape control and the system collapses into a contrasting, invaded, low-diversity state.
Answer:
Molecular genetic approaches to the study of plant metabolism can be traced back to the isolation of the first cDNA encoding a plant enzyme (Bedbrook et al., 1980), the use of the Agrobacterium Ti plasmid to introduce foreign DNA into plant cells (Hernalsteens et al., 1980) and the establishment of routine plant transformation systems (Bevan, 1984; Horsch et al., 1985). It became possible to express foreign genes in plants and potentially to overexpress plant genes using cDNAs linked to strong promoters, with the aim of modifying metabolism. However, the discovery of the antisense phenomenon of plant gene silencing (van der Krol et al., 1988; Smith et al., 1988), and subsequently co‐suppression (Napoli et al., 1990; van der Krol et al., 1990), provided the most powerful and widely‐used methods for investigating the roles of specific enzymes in metabolism and plant growth. The antisense or co‐supression of gene expression, collectively known as post‐transcriptional gene silencing (PTGS), has been particularly versatile and powerful in studies of plant metabolism. With such molecular tools in place, plant metabolism became accessible to investigation and manipulation through genetic modification and dramatic progress was made in subsequent years (Stitt and Sonnewald, 1995; Herbers and Sonnewald, 1996), particularly in studies of solanaceous species (Frommer and Sonnewald, 1995).
Idk sorry i need 2 more points!