Refer to the diagram shown below.
g = 9.8 m/s², and air resistance is ignored.
For mass m₁:
The normal reaction is m₁g.
The resisting force is R₁ = μm₁g.
For mass m₂:
The normal reaction is m₂g.
The resisting force is R₂ = μm₂g.
Let a = the acceleration of the system.
Then
(m₁ + m₂)a = F - (R₁ + R₂)
(14+26 kg)*(a m/s²) = (65 N) - 0.098*(9.8 m/s²)*(14+26 kg)
40a = 65 - 38.416 = 26.584
a = 0.6646 m/s²
Answer: 0.665 m/s² (nearest thousandth)
I believe you forgot to add the choices. I will tell you some of the characteristics of mixtures and I hope you find one of them in the choices you have.
A mixture is a physical combination between two or more elements. No chemical reaction is involved in the formation of mixtures.
The components of the mixture can be separated using physical methods such as filtration, boiling and condensation.
Examples of mixtures include mixture of sugar and water or mixture of salt and sugar.
Answer:
A. The sum of all the forces acting on an object.
Answer:
μ = 0.33
Equal to 3.2 m/s²
Explanation:
Draw a free body diagram of the block. There are three forces:
Normal force N pushing up.
Weight force mg pulling down.
Friction force Nμ pushing opposite the direction of motion.
Sum of forces in the y direction.
∑F = ma
N − mg = 0
N = mg
Sum of forces in the x direction.
∑F = ma
Nμ = ma
Substitute.
mgμ = ma
μ = a/g
μ = (3.2 m/s²) / (9.8 m/s²)
μ = 0.33
As found earlier, the acceleration is a = gμ. Since g and μ are constant, a is also constant, so it does not change with velocity.
Should be 1.4, I hope this helps you out