Answer:
a) 
b) 
Explanation:
The frequency of the
harmonic of a vibrating string of length <em>L, </em>linear density
under a tension <em>T</em> is given by the formula:

a) So for the <em>fundamental mode</em> (n=1) we have, substituting our values:

b) The <em>frequency difference</em> between successive modes is the fundamental frequency, since:

Distance fallen = 1/2 ( V initial + V final ) *t
We know
a = -9.8 m/s2
t=120s
To find distance fallen, we need to find V final
Use the equation
V final = V initial + a*t
Substitute known values
V final = 0 + (-9.8)(120)
V final = -1176 m/s
Then plug known values to distance fallen equation
Distance fallen = 1/2 ( 0 + 1176 )(120)
= 1/2(1776)(120)
=106,560 m
This way plugging into distance equation is actually the long way. A faster way is to plug the values into
Distance fallen = V initial * t + 1/2(a*t)
We won't need to find V final using another equation.
But anyways, good luck!