Answer:
Cleaning up oil spills and metal contaminates in a low-impact, sustainable and inexpensive manner remains a challenge for companies and governments globally.
But a group of researchers at UW–Madison is examining alternative materials that can be modified to absorb oil and chemicals. If further developed, the technology may offer a cheaper and “greener” method to absorb oil and heavy metals from water and other surfaces.
Aerogels, which are highly porous materials and the lightest solids in existence, are already used in a variety of applications, ranging from insulation and aerospace materials to thickening agents in paints. The aerogel prepared in Gong’s lab is made of cellulose nanofibrils (sustainable wood-based materials) and an environmentally friendly polymer. Furthermore, these cellulose-based aerogels are made using an environmentally friendly freeze-drying process without the use of organic solvents.
It’s the combination of this “greener"material and its high performance that got Gong’s attention.
“For this material, one unique property is that it has superior absorbing ability for organic solvents — up to nearly 100 times its own weight,” she says. “It also has strong absorbing ability for metal ions.”
Treating the cellulose-based aerogel with specific types of silane after it is made through the freeze-drying process is a key step that gives the aerogel its water-repelling and oil-absorbing properties.
Polaris the north star is very bright and it doesn’t move
The chemical formula depends on the type of acids it is. Acidic rain is a complex mixture of nitrous, nitric, sulfurous and sulfuric acids which all combine to lower the pH.
3) +7
I got this stupid question wrong so that you people don't have to. I simply hate chemistry and I wish it didn't exist. Kind of like this website that makes me explain the answer.
Trust me, the answer is correct
The chemical reaction is expressed as:
3Ba(NO3)2 + 2Na3PO4 = Ba3(PO4)2 + 6NaNO3
To determine the percent yield, we need to determine the theoretical yield of the reaction from the given amounts of the reactants. We do as follows:
0.3 mol 3Ba(NO3)2 ( 2 mol Na3PO4 / 3 mol Ba(NO3)2) = 0.2 mol Na3PO4
Therefore, the limiting reactant would be Ba(NO3)2 since it is consumed completely in the reaction.
Theoretical yield = 0.3 mol 3Ba(NO3)2 ( 1 mol Ba3(PO4)2 / 3 mol Ba(NO3)2) = 0.1 mol Ba3(PO4)2
Percent yield = actual yield / theoretical yield = 0.095 mol Ba3(PO4)2 / 0.1 mol Ba3(PO4)2 x 100 = 95%