Answer:
The enthalpy of vaporization of water at 273 K and 1 bar = 44.9 KJ/mol
Explanation:
Enthalpy of vaporization of water at 273 K, ΔHvap(T₂) is given as;
ΔHvap(T₂) = ΔHvap(T₁) + ΔCp * (T₂ - T₁)
where ΔCp = molar heat capacity of gas - molar heat capacity of liquid
Therefore, ΔCp = (33.6 - 75.3) = -41.70 J/(mol K) = 0.0417 kJ/(molK)
substituting ΔCp = 0.0417 kJ/(mol K) in the initial formula
;
ΔHvap(T) = ΔHvap(T1) + ΔCp * (T₂ - T₁)
ΔHvap(T₂)= 40.7 kJ/mol + {-0.0417 kJ/(mol K) * (272 - 373 K)}
ΔHvap(T₂) = 44.9 kJ/mol
Therefore, enthalpy of vaporization of water at 273 K and 1 bar = 44.9kJ/mol
Answer:
Due to the accumulation of static charges/due to static electricity
Water and dimond are the 2 pure substances
Answer:
the heavy one
Explanation:
the heavy one because heavy things and break things and the light one can't
Correct Question:
A chemist measures the enthalpy change ΔH during the following reaction: Fe(s) + 2HCl(g)-->FeCl2(s) + H2 ΔH=-157.0 kJ. Use this information to complete the table below. Round each of your answers to the nearest kJ/mol
Answer:
-314 kJ
+628 kJ
+157 kJ
Explanation:
The enthalpy change of a reaction measures the amount of heat that is lost or gained by it. If ΔH >0 the heat is gained, and the reaction is called endothermic, if ΔH<0, the heat is lost, and the reaction is called exothermic.
If the reaction is inverted, the value of ΔH is inverted too (the opposite endothermic reaction is exothermic), and if the reaction is multiplied by a constant, ΔH will be multiplied by it too.
1) 2Fe(s) + 4HCl --> 2FeCl2(s) + 2H2(g)
This reaction is the product of the given reaction by 2, so
ΔH = 2*(-157) = -314 kJ
2) 4FeCl2(s) + 4H2(g) --> 4Fe(s) + 8HCl(g)
This reaction is the inverted reaction given multiplied by 4, so
ΔH = 4*(157) = +628 kJ
3) FeCl2(s) + H2(g) --> Fe(s) + 2HCl
This reaction is the inverted reaction given, so
ΔH = +157 kJ