The trial and error method is used to find an initial factor:
If we let f(x) = x³ - x² - 24x - 36 and all we have to do is sub' in values of x until
f(x) = 0, we can use this to find an initial factor by the factor theorem:
f(1) = (1)³ - (1)² - 24(1) - 36 = -60
f(2) = (2)³ - (2)² - 24(2) - 36 = -80
f(5) = (5)³ - (5)² - 24(5) - 36 = -56
*** f(6) = (6)³ - (6)² - 24(6) - 36 = 0 ***
f(6) = 0 so (x - 6) is a factor of f(x).
This means that: f(x) = x³ - x² - 24x - 36 = (x - 6)(ax² + bx + c).
To find a,b and c, use long division (or inspection) to divide x³ - x² - 24x - 36 by x - 6.
The other 2 factors of f(x) can then be found by factorizing the
ax² + bx + c quadratic the way you would with any other quadratic (i.e. by quadratic formula, CTS or inspection).
Answer:
Yes, we can assume that the percent of female athletes graduating from the University of Colorado is less than 67%.
Step-by-step explanation:
We need to find p-value first:
z statistic = (p⁻ - p0) / √[p0 x (1 - p0) / n]
p⁻ = X / n = 21 / 38 = 0.5526316
the alternate hypothesis states that p-value must be under the normal curve, i.e. the percent of female athletes graduating remains at 67%
H1: p < 0.67
z = (0.5526316 - 0.67) / √[0.67 x (1 - 0.67) / 38] = -0.1173684 / 0.076278575
z = -1.538681
using a p-value calculator for z = -1.538681, confidence level of 5%
p-value = .062024, not significant
Since p-value is not significant, we must reject the alternate hypothesis and retain the null hypothesis.
I thank it is a. yards i am no sure that is right
X = 4 and Y = 9. I did a complicated way of doing it so if u copy it it would look weird
Answer:
×=4.2
Step-by-step explanation:
3.5x=14.7
÷3.5 ÷3.5
x=4.2