Let's solve your equation step-by-step.<span><span><span><span>2<span>x2</span></span>−<span>3x</span></span>−4</span>=0</span>Step 1: Use quadratic formula with a=2, b=-3, c=-4.<span>x=<span><span><span>−b</span>±<span>√<span><span>b2</span>−<span><span>4a</span>c</span></span></span></span><span>2a</span></span></span><span>x=<span><span><span>−<span>(<span>−3</span>)</span></span>±<span>√<span><span><span>(<span>−3</span>)</span>2</span>−<span><span>4<span>(2)</span></span><span>(<span>−4</span>)</span></span></span></span></span><span>2<span>(2)</span></span></span></span><span>x=<span><span>3±<span>√41</span></span>4</span></span><span><span>x=<span><span>34</span>+<span><span><span><span>14</span><span>√41</span></span><span> or </span></span>x</span></span></span>=<span><span>34</span>+<span><span><span>−1</span>4</span><span>√<span>41</span></span></span></span></span>
No one because their is no fractions Or whole numbers or even decimals to show the amount that they ran please check to see if their is any other part to this question
Answer:
0.13591.
Step-by-step explanation:
We re asked to find the probability of randomly selecting a score between 1 and 2 standard deviations below the mean.
We know that z-score tells us that a data point is how many standard deviation above or below mean.
To solve our given problem, we need to find area between z-score of -2 and -1 that is
.
We will use formula
to solve our given problem.

Using normal distribution table, we will get:


Therefore, the probability of randomly selecting a score between 1 and 2 standard deviations below the mean would be 0.13591.
49498683837. To work these questions out, use column addition, it is a quick and simple way to add large numbers.