Given info:
Compound Interest = Rs.1290
Rate of Interest = 15% p.a
Time = 2 years
<h3>Formula we have to know:-</h3>

<u>Where</u>
C.I = Compound Interest
P = Principle
R = Rate of Interest
N = Time

Here
C.I = Rs.1290
R = 15%
N = 2 years
Principle = ?
Now,Calculating the sum (Principle) borrowed by Rachna
![\quad{: \implies{\sf{C.I = \Bigg[P \bigg(1 + \dfrac{R}{100} \bigg)^{n} - 1 \Bigg]}}}](https://tex.z-dn.net/?f=%20%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7BC.I%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%281%20%20%2B%20%5Cdfrac%7BR%7D%7B100%7D%20%5Cbigg%29%5E%7Bn%7D%20%20-%201%20%5CBigg%5D%7D%7D%7D)
Substituting the given values
![\quad{: \implies{\sf{1290 = \Bigg[P \bigg(1 + \dfrac{15}{100} \bigg)^{2} - 1 \Bigg]}}}](https://tex.z-dn.net/?f=%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7B1290%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%281%20%20%2B%20%5Cdfrac%7B15%7D%7B100%7D%20%5Cbigg%29%5E%7B2%7D%20%20-%201%20%5CBigg%5D%7D%7D%7D)
![\quad{: \implies{\sf{1290 = \Bigg[P \bigg(\dfrac{(1 \times 100) + 15}{100} \bigg)^{2} - 1 \Bigg]}}}](https://tex.z-dn.net/?f=%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7B1290%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%28%5Cdfrac%7B%281%20%5Ctimes%20100%29%20%2B%2015%7D%7B100%7D%20%5Cbigg%29%5E%7B2%7D%20%20-%201%20%5CBigg%5D%7D%7D%7D)
![\quad{: \implies{\sf{1290 = \Bigg[P \bigg(\dfrac{115}{100} \bigg)^{2} - 1 \Bigg]}}}](https://tex.z-dn.net/?f=%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7B1290%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%28%5Cdfrac%7B115%7D%7B100%7D%20%5Cbigg%29%5E%7B2%7D%20%20-%201%20%5CBigg%5D%7D%7D%7D)
![\quad{: \implies{\sf{1290 = \Bigg[P \bigg(\dfrac{115}{100} \times \dfrac{115}{100} \bigg) - 1 \Bigg]}}}](https://tex.z-dn.net/?f=%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7B1290%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%28%5Cdfrac%7B115%7D%7B100%7D%20%5Ctimes%20%5Cdfrac%7B115%7D%7B100%7D%20%20%5Cbigg%29%20%20-%201%20%5CBigg%5D%7D%7D%7D)
![\quad{: \implies{\sf{1290 = \Bigg[P \bigg(\dfrac{13225}{10000} \bigg) - 1 \Bigg]}}}](https://tex.z-dn.net/?f=%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7B1290%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%28%5Cdfrac%7B13225%7D%7B10000%7D%20%5Cbigg%29%20-%201%20%5CBigg%5D%7D%7D%7D)
![\quad{: \implies{\sf{1290 = \Bigg[P \bigg( \cancel{\dfrac{13225}{10000}} \bigg) - 1 \Bigg]}}}](https://tex.z-dn.net/?f=%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7B1290%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%28%20%5Ccancel%7B%5Cdfrac%7B13225%7D%7B10000%7D%7D%20%5Cbigg%29%20-%201%20%5CBigg%5D%7D%7D%7D)
![\quad{: \implies{\sf{1290 = \Bigg[P \bigg({1.3225 - 1} \bigg) \Bigg]}}}](https://tex.z-dn.net/?f=%5Cquad%7B%3A%20%5Cimplies%7B%5Csf%7B1290%20%3D%20%20%5CBigg%5BP%20%20%5Cbigg%28%7B1.3225%20-%201%7D%20%5Cbigg%29%20%5CBigg%5D%7D%7D%7D)








<u>Hence,</u>
The sum (Principle) is Rs.4000.
cuboid=3*3*5 [i.e l*b*h]
LCM of 3,5=15
i.e 15cm is the dimension of the final cube.
therefore cuboid required across length=15/3=5
similarly, across breadth=15/3=5
similarly, across height=15/5=3
Therefore total no of cuboid=5*5*3=75
Answer:
if he wants to have $400000 on gis bank in 30 years at 4 %rate then he needs to deposit $15151.5 per month
Answer:
2 hours
Step-by-step explanation:
you can write two linear equations and then set them equal to each other to see when they intersect. so for the first equation which will be representing the junior space cadets distance from his house. this can be written as
d = 50t + 50
where t represents time and d represents distance. there is 50 being added to the equation since he had already been traveling for an hour
the second equation which will represent his sister Gwen can be represented as
d = 75t
Now we set them equal to each other
50t + 50 = 75t
50 = 25t
2 = t