Answer:
![P(A) = \frac{30}{100}](https://tex.z-dn.net/?f=P%28A%29%20%3D%20%5Cfrac%7B30%7D%7B100%7D)
![P(B) = \frac{77}{100}](https://tex.z-dn.net/?f=P%28B%29%20%3D%20%5Cfrac%7B77%7D%7B100%7D)
![P(A\ n\ B) = \frac{22}{100}](https://tex.z-dn.net/?f=P%28A%5C%20n%5C%20B%29%20%3D%20%5Cfrac%7B22%7D%7B100%7D)
![P(A\ u\ B) = \frac{85}{100}](https://tex.z-dn.net/?f=P%28A%5C%20u%5C%20B%29%20%3D%20%5Cfrac%7B85%7D%7B100%7D)
Step-by-step explanation:
Given
See attachment for proper format of table
--- Sample
A = Supplier 1
B = Conforms to specification
Solving (a): P(A)
Here, we only consider data in sample 1 row.
In this row:
and ![No = 8](https://tex.z-dn.net/?f=No%20%3D%208)
So, we have:
![n(A) = Yes + No](https://tex.z-dn.net/?f=n%28A%29%20%3D%20Yes%20%2B%20No)
![n(A) = 22 + 8](https://tex.z-dn.net/?f=n%28A%29%20%3D%2022%20%2B%208)
![n(A) = 30](https://tex.z-dn.net/?f=n%28A%29%20%3D%2030)
P(A) is then calculated as:
![P(A) = \frac{n(A)}{Sample}](https://tex.z-dn.net/?f=P%28A%29%20%3D%20%5Cfrac%7Bn%28A%29%7D%7BSample%7D)
![P(A) = \frac{30}{100}](https://tex.z-dn.net/?f=P%28A%29%20%3D%20%5Cfrac%7B30%7D%7B100%7D)
Solving (b): P(B)
Here, we only consider data in the Yes column.
In this column:
and ![(3) = 30](https://tex.z-dn.net/?f=%283%29%20%3D%2030)
So, we have:
![n(B) = (1) + (2) + (3)](https://tex.z-dn.net/?f=n%28B%29%20%3D%20%281%29%20%2B%20%282%29%20%2B%20%283%29)
![n(B) = 22 + 25 + 30](https://tex.z-dn.net/?f=n%28B%29%20%3D%2022%20%2B%2025%20%2B%2030)
![n(B) = 77](https://tex.z-dn.net/?f=n%28B%29%20%3D%2077)
P(B) is then calculated as:
![P(B) = \frac{n(B)}{Sample}](https://tex.z-dn.net/?f=P%28B%29%20%3D%20%5Cfrac%7Bn%28B%29%7D%7BSample%7D)
![P(B) = \frac{77}{100}](https://tex.z-dn.net/?f=P%28B%29%20%3D%20%5Cfrac%7B77%7D%7B100%7D)
Solving (c): P(A n B)
Here, we only consider the similar cell in the yes column and sample 1 row.
This cell is: [Supplier 1][Yes]
And it is represented with; n(A n B)
So, we have:
![n(A\ n\ B) = 22](https://tex.z-dn.net/?f=n%28A%5C%20n%5C%20B%29%20%3D%2022)
The probability is then calculated as:
![P(A\ n\ B) = \frac{n(A\ n\ B)}{Sample}](https://tex.z-dn.net/?f=P%28A%5C%20n%5C%20B%29%20%3D%20%5Cfrac%7Bn%28A%5C%20n%5C%20B%29%7D%7BSample%7D)
![P(A\ n\ B) = \frac{22}{100}](https://tex.z-dn.net/?f=P%28A%5C%20n%5C%20B%29%20%3D%20%5Cfrac%7B22%7D%7B100%7D)
Solving (d): P(A u B)
This is calculated as:
![P(A\ u\ B) = P(A) + P(B) - P(A\ n\ B)](https://tex.z-dn.net/?f=P%28A%5C%20u%5C%20B%29%20%3D%20P%28A%29%20%2B%20P%28B%29%20-%20P%28A%5C%20n%5C%20B%29)
This gives:
![P(A\ u\ B) = \frac{30}{100} + \frac{77}{100} - \frac{22}{100}](https://tex.z-dn.net/?f=P%28A%5C%20u%5C%20B%29%20%3D%20%5Cfrac%7B30%7D%7B100%7D%20%2B%20%5Cfrac%7B77%7D%7B100%7D%20-%20%5Cfrac%7B22%7D%7B100%7D)
Take LCM
![P(A\ u\ B) = \frac{30+77-22}{100}](https://tex.z-dn.net/?f=P%28A%5C%20u%5C%20B%29%20%3D%20%5Cfrac%7B30%2B77-22%7D%7B100%7D)
![P(A\ u\ B) = \frac{85}{100}](https://tex.z-dn.net/?f=P%28A%5C%20u%5C%20B%29%20%3D%20%5Cfrac%7B85%7D%7B100%7D)
Answer:its yhe one on the right
Step-by-step explanation:
Answer:
Make sure the mode is on degree and not radian! Common mistake
Answer:
$26
Step-by-step explanation:
Let blueberry pies = x and lemon pies = y.
4x + 13y = 230
4x + 2y = 76
Using elimination, we see that 11y = 154. Therefore, y = 14.
4x + 2(14) = 76
4x + 28 = 76
4x = 48
x = 12
x + y = 12 + 14 = 26.
$26 is your answer.