Prokaryotes and eukaryotes differ in terms of size, presence of nucleus, presence of golgi apparatus and other features. Prokaryotes are way smaller than their counterparts, and do not have nuclei and golgi apparatus.
Thank you for posting your question. I hope you found what you were after. Please feel free to ask me more.
<span> </span>
Answer:
Proteins and lipids exist as separate but loosely attached molecules that can move around
Explanation:
Cell membranes are mainly composed of lipids, proteins, and also carbohydrates. Phospholipids are the most abundant type of lipid and the main constituent of the cell membranes. Membrane proteins are divided into two types according to their interactions with the cell membrane: 1-integral (intrinsic) and peripheral (extrinsic) proteins. These peripheral proteins are loosely attached by ionic bonds or calcium bridges with the phosphate heads of the phospholipids; whereas integral membrane proteins contain side chains that interact with fatty acyl groups of the phospholipids. Cell membrane fluidity indicates how easily lipids (e.g., phospholipids and cholesterol) and proteins (e.g., intrinsic proteins) diffuse laterally in the cell membrane. This fluidity is affected by the amount of cholesterol, temperature, and the ratio of unsaturated to saturated fatty acids. Saturated fatty acids have no double bonds in the hydrocarbon chain, whereas unsaturated fatty acids have at least one double bond (these double bonds increase fluidity). Moreover, higher temperatures increase membrane fluidity, whereas cholesterol molecules function to regulate membrane fluidity: at high temperatures cholesterol molecules stabilize the membrane, whereas at low temperatures intercalate between phospholipids, thereby preventing them from clustering together.
Hello There!
It would be a Warm Front.
Hope This Helps You!
Good Luck :)
- Hannah ❤
11 atoms hope this helps!
According to Esaias, the changes aren’t just dramatic, they’re also kind of scary. The fertility of most flowering plants, including nearly all fruits and vegetables, depends on animal-mediated pollination. As the pollinators move from flower to flower for nectar--a high-energy, sugary enticement—the plants dust them with pollen, which the animals transfer from flower to flower.