I believe it is c. e. and f.
Since they are already in order you know the 22 and the 61 are the upper and lower extremes. To find the median you find the number that is in the middle which is 42. To find the lower quartile find the middle number starting from the first number and the number to the left of the median (22 and 36 in this case). The loser quartile is 25. To find the upper quartile, fine the middle number between the number to the right of the median and the last number (44 and 61 in this case.) the upper quartile is 57 you then just plot it and graph it
The work is attached
Answer:
(x + 1)/4x² + 4(x + 1)/4x²
Step-by-step explanation:
x+1/4x² + x+1/x²
The above can be simply as follow:
Find the least common multiple (LCM) of 4x² and x². The result is 4x²
Now Divide the LCM by the denominator of each term and multiply the result with the numerator as show below:
(4x² ÷ 4x²) × (x + 1) = x + 1
(4x² ÷ x²) × (x + 1) = 4(x + 1)
x+1/4x² + x+1/x² = [(x + 1) + 4(x + 1)]/ 4x²
= (x + 1)/4x² + 4(x + 1)/4x²
Therefore,
x+1/4x² + x+1/x² = (x + 1)/4x² + 4(x + 1)/4x²
The other 2 angles of given right angles are 61.93° and 28.072°, if a triangle with side lengths 8, 15, and 17 is a right triangle by the converse of the Pythagorean Theorem.
Step-by-step explanation:
The given is,
Right angled triangle,
Side lengths are 8, 15, and 17
Step:1
The given triangle is right angle triangle by the converse of Pythagorean theorem, so the trigonometric ratio,
Ref the attachment,
For angle a,
...................................................(1)
Where, Opp - 8
Hyp - 17
From equation (1),
= 0.470588
(0.470588)
a = 28.072°
For angle b,
...................................................(1)
Where, Opp - 15
Hyp - 17
From equation (1),
= 0.882352
(0.882352)
b = 61.93°
Step:2
Check for solution for right angle triangle,
90 ° = Other 2 angles
90 ° = a + b
90 ° = 28.072° + 61.93°
90 ° = 90 °
Result:
The other 2 angles of given right angles are 61.93° and 28.07°, if a triangle with side lengths 8, 15, and 17 is a right triangle by the converse of the Pythagorean Theorem.
Statement Reason
1) 4x + 5 = 17 Given
2) 4x + 5 - 5 = 17 - 5 Subtraction property of equality
3) 4x = 12 Simplifying
4) 4x/4 = 12/4 Division property of equality
5) x = 3 Simplifying