1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flura [38]
2 years ago
7

Is the following a function? (2,5),(-9,5), (1,8), (3,2), (-2,1)? A.yes B.no

Mathematics
2 answers:
ohaa [14]2 years ago
4 0

Answer:

Yes

Step-by-step explanation:

Phantasy [73]2 years ago
4 0
Yes sorry if wrong tho
You might be interested in
Hi! I need help on #12 A, and B! Just kinda confused so if u could explain in a simple way that’d be great!
Vinvika [58]

Assume that the bank balance started at zero. Enter the income and outgo in chronological order: $300 - $50 - $75 + $225

Find the sum. This sum will represent the amount left in the account after the $225 deposit:

$250 - $75 + $225, or

$175 + $225 = $400 The final balance will be $400.

5 0
3 years ago
Read 2 more answers
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
What is twice the number of n and 11
saul85 [17]

Answer:

2n+22

Step-by-step explanation:

(n+11)2=

2n+22

7 0
2 years ago
Which of the following is equivalent to x<br> x ²2
Viefleur [7K]
Thanks for free points.
7 0
2 years ago
Find the x-coordinate for the midpoint of AB if A(-3, 8) and B(-7,-6).
spayn [35]

x =-5

------

1) Since the Formula of the Midpoint is:

2) So Let's plug it into the formula the values, for A, and B

3) So the x coordinate of the Midpoint is x =-5

4 0
10 months ago
Other questions:
  • What’s the probability of a C or a Z
    7·1 answer
  • 1. What is the difference between –4 and 6?
    5·2 answers
  • 3016÷13 help.me please​
    9·2 answers
  • How long should they make the front paw?
    11·1 answer
  • I keep getting confused I don't understand what I keep doing wrong
    7·1 answer
  • What is the IQR (Inter Quartile Range) for the data set? 11 6 19 14 21 7 13 15 15 Question 10 options: 8 9 15 17
    7·1 answer
  • HELP ASAP!!!! WILL GIVE BRAINLIEST! Tamara bought yarn for $39 and 2 pairs of knitting needles. Her total cost for the yarn and
    13·2 answers
  • Pls help thx , I’m behind ;(
    10·1 answer
  • Classify a triangle whose side lengths are 8, 16, and 18
    5·2 answers
  • In the decimal 55.555, which is 1/10 the value of the 5 in the tenths place?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!