We can do this with the conservation of momentum. The fact it is elastic means no KE is lost so we don't have to worry about the loss due to sound energy etc.
Firstly, let's calculate the momentum of both objects using p=mv:
Object 1:
p = 0.75 x 8.5 = 6.375 kgm/s
Object 2 (we will make this one negative as it is travelling in the opposite direction):
p = 0.65 x -(7.2) = -4.68 kgm/s
Based on this we know that the momentum is going to be in the direction of object one, and will be 6.375-4.68=1.695 kgm/s
Substituting this into p=mv again:
1.695 = (0.75+0.65) x v
Note I assume here the objects stick together, it doesn't specify - it should!
1.695 = 1.4v
v=1.695/1.4 = 1.2 m/s to the right (to 2sf)
Answer:
The space surrounding a charged object is affected by the presence of the charge; an electric field is established in that space. A charged object creates an electric field - an alteration of the space or field in the region that surrounds it. Other charges in that field would feel the unusual alteration of the space.
Explanation:
Sure what do u need help with
De broglie wavelength,
, where h is the Planck's constant, m is the mass and v is the velocity.

Mass of hydrogen atom, 
v = 440 m/s
Substituting
Wavelength 

So the de broglie wavelength (in picometers) of a hydrogen atom traveling at 440 m/s is 902 pm
<span>The energy removed from a 450 g block of ice can only be done with a few options: a colder freezing facility, liquid nitrogen, or stopping the energy at all and adding dry ice for a brief period. The 450 g block should loose heat energy faster in a thermostat set at -20 degrees just to maintain the ice formation.</span>