It depends on how many hours!
1 hour = 40km
2 hours = 80km
Answer:
A-Caclcuate the potential energy of the ball at that height
Explanation:
(a). Mass of the Body = 10 kg.
Height = 10 m.
Acceleration due to gravity = 9.8 m/s².
Using the Formula,Potential Energy = mgh
= 10 × 9.8 × 10 = 980 J.
(b). Now, By the law of the conservation of the Energy, Total amount of the energy of the system remains constant.
∴ Kinetic Energy before the body reaches the ground is equal to the Potential Energy at the height of 10 m.
∴ Kinetic Energy = 980 J.
(c). Kinetic Energy = 980 J.
Mass of the ball = 10 kg.
∵ K.E. = 1/2 × mv²
∴ 980 = 1/2 × 10 × v²
∴ v² = 980/5
⇒ v² = 196
∴ v = 14 m/s.
Answer: 2.80 N/C
Explanation: In order to calculate the electric firld inside the solid cylinder
non conductor we have to use the Gaussian law,
∫E.ds=Q inside/ε0
E*2πrL=ρ Volume of the Gaussian surface/ε0
E*2πrL= a*r^2 π* r^2* L/ε0
E=a*r^3/(2*ε0)
E=6.2 * (0.002)^3/ (2*8.85*10^-12)= 2.80 N/C
Answer:
at t=46/22, x=24 699/1210 ≈ 24.56m
Explanation:
The general equation for location is:
x(t) = x₀ + v₀·t + 1/2 a·t²
Where:
x(t) is the location at time t. Let's say this is the height above the base of the cliff.
x₀ is the starting position. At the base of the cliff we'll take x₀=0 and at the top x₀=46.0
v₀ is the initial velocity. For the ball it is 0, for the stone it is 22.0.
a is the standard gravity. In this example it is pointed downwards at -9.8 m/s².
Now that we have this formula, we have to write it two times, once for the ball and once for the stone, and then figure out for which t they are equal, which is the point of collision.
Ball: x(t) = 46.0 + 0 - 1/2*9.8 t²
Stone: x(t) = 0 + 22·t - 1/2*9.8 t²
Since both objects are subject to the same gravity, the 1/2 a·t² term cancels out on both side, and what we're left with is actually quite a simple equation:
46 = 22·t
so t = 46/22 ≈ 2.09
Put this t back into either original (i.e., with the quadratic term) equation and get:
x(46/22) = 46 - 1/2 * 9.806 * (46/22)² ≈ 24.56 m
Answer:
Explanation:
Expression for times period of a satellite can be given as follows
Time period T = 1.8 x 60 x 60
= 6480
T² =
where T is time period , r is radius of orbit , G is gravitational constant and M is mass of the satellite.
6480² = 4 x 3.14² x 7.5³ x 10¹⁸ / GM
GM = 4 x 3.14² x 7.5³ x 10¹⁸ / 6480²
= 3.96 X 10¹⁴
Expression for acceleration due to gravity
g = GM / R² where R is radius of satellite
20 = 3.96 X 10¹⁴ / R²
R² = 3.96 X 10¹⁴ / 20
= 1.98 x 10¹³ m
R= 4.45 x 10⁶ m