Answer:
The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
Explanation:
Given that,
Amplitude = 0.08190 m
Frequency = 2.29 Hz
Wavelength = 1.87 m
(a). We need to calculate the shortest transverse distance between a maximum and a minimum of the wave
Using formula of distance

Where, d = distance
A = amplitude
Put the value into the formula


Hence, The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
Answer:
the refracted rays neither converge nor diverge. After refracting, the light rays are traveling parallel to each other and cannot produce an image.
Explanation:
Answer:
Height from ground is 8 m where string will break
Explanation:
Let the string makes some angle with the vertical after some instant of time
So here we have


now by energy conservation we have




For string break down we have


Now height from the ground is given as



Answer:
2 seconds
Explanation:
The function of height is given in form of time. For maximum height, we need to use the concept of maxima and minima of differentiation.

Differentiate with respect to t on both the sides, we get

For maxima and minima, put the value of dh / dt is equal to zero. we get
- 32 t + 64 = 0
t = 2 second
Thus, the arrow reaches at maximum height after 2 seconds.
Answer:
Troposphere
High-pressure areas form due to downward motion through the troposphere, the atmospheric layer where weather occurs.