Answer:
Sample B
Explanation:
When heat is added to a substance, the molecules and atoms vibrate faster. Since the speed for Sample B is higher this means it has a higher temperature as well.
Answer:
The correct answers are:
a) 180 g
b) 93.7 cm³
Explanation:
The density of a substance is the mass of the substance per unit of volume. So, it is calculated as follows:
density= mass/volume
From the data provided in the problem:
density = 0.8 g/cm³
a) Given: volume= 225 cm³
mass= density x volume = 0.8 g/cm³ x 225 cm³ = 180 g
b) Given: mass= 75.0 g
volume = mass/density = 75.0 g/(0.8 g/cm³)= 93.75 cm³≅ 93.7 cm³
Explanation:
The balanced equation of the reaction is given as;
Mg(OH)2 (s) + 2 HBr (aq) → MgBr2 (aq) + 2 H2O (l)
1. How many grams of MgBr2 will be produced from 18.3 grams of HBr?
From the reaction;
2 mol of HBr produces 1 mol of MgBr2
Converting to masses using;
Mass = Number of moles * Molar mass
Molar mass of HBr = 80.91 g/mol
Molar mass of MgBr2 = 184.113 g/mol
This means;
(2 * 80.91 = 161.82g) of HBr produces (1 * 184.113 = 184.113g) MgBr2
18.3g would produce x
161.82 = 184.113
18.3 = x
x = (184.113 * 18.3 ) / 161.82 = 20.8 g
2. How many moles of H2O will be produced from 18.3 grams of HBr?
Converting the mass to mol;
Number of moles = Mass / Molar mass = 18.3 / 80.91 = 0.226 mol
From the reaction;
2 mol of HBr produces 2 mol of H2O
0.226 mol would produce x
2 =2
0.226 = x
x = 0.226 * 2 / 2 = 0.226 mol
3. How many grams of Mg(OH)2 are needed to completely react with 18.3 grams of HBr?
From the reaction;
2 mol of HBr reacts with 1 mol of Mg(OH)2
18.3g of HBr = 0.226 mol
2 = 1
0.226 = x
x = 0.226 * 1 /2
x = 0.113 mol
Answer:
a. Cellular Respiration produces more ATP than Anaerobic Respiration.
Explanation:
Cellular Respiration creates a total of 36-38 ATP per round. Anaerobic processes only produce 2 ATP per cycle.