Answer:
The forward reaction is an exothermic reaction.
Explanation:
An exothermic reaction is one in which energy is released, usually in the form of heat hence the enthalpy of the reaction is negative. When a reaction exothermic, the energy of the reactants is greater than the energy of the products hence the excess energy is given out as heat. The reactants lie at a higher energy level in the reaction profile compared to the products.
When we look at the reaction given in the question, NO(g) ⇌ 12N2(g) + 12O2(g) ΔH = −90.3 kJ , we can easily see from the thermochemical reaction that the forward reaction is exothermic, energy is released by the reaction system as evidenced by the negative enthalpy of reaction.
The Balanced chemical equation of reaction of Borane with oxygen is as follow,
B₂H₆ + 3O₂ -----> 2HBO₂ + 2H₂O
According to this equation 27.66 g (1 mole) of B₂H₆ reacts with oxygen to produce 36 g (2 moles) of water.
The amount of water produced when 19.2 g of B₂H₆ reacted is calculated as follow,

=

Solving for x,
x = (36 g of H₂O ₓ 19.2 g of H₂B₆) / 27.66 g of B₂H₆
x =
24.98 g of H₂O
Result:
24.98 g of water is produced when 19.2 g of B₂H₆ is reacted with excess of oxygen.
Answer 2. Accept with minor revisions: Also known as conditional acceptance, this decision means that the paper requires minor changes for it to be ...
wer:
Explanation:
According to provided equation it is clear that Zn metal is oxidized from Zn⁰ into Zn²⁺ which means that Zn metal dissolves and forming Zn²⁺ solution so the correct answer is:
mass of the Zn(s) electrode decreases