Answer:
Which best describes a difference between energy transformations in power plants and dams? Only power plants use fossil fuels to transform energy. Only dams use fission to generate thermal energy. ... Only dams use mechanical energy to produce electricity.
Explanation:
HOPE THIS HELP
PICK ME AS THE BRAINLIEST
Answer:

Explanation:
1. Take in account the sulfuric acid at STP:

2. Density is expressed as the ratio between the mass and the volume of a substance so:

Solving for m:

3. Replace values:


Answer:
- NaClO₃ > KBr > KNO₃ > NaCl.
Explanation:
The attached file contains the graph with the solubility curves for the four substances, KNO₃, NaClO₃, KBr, NaCl.
To determine the solubility of each salt at a certain temperature, you read the temperature on the horizontal axis, labeled Temperature (ºC), and move upward up to intersecting the curve of the corresponding salt. Then, move horizontally up to insersceting the vertical axis, labeled Solubility (g/100g of H₂O), to read the solubility.
The higher the reading on the vertical axis, the higher the solubility.
The red vertical line that I added is at a temperature of 40ºC.
The number in blue indicate the order in which the solubility curves are intersected at that temperature:
- 4: NaCl: this is the lowest solubility
- 3: KNO₃: this is the second lowest solubility
- 2: KBr: this is the third lowest solubility
- 1: NaClO₃: this is the highest solubility.
Thus, the rank, from most soluble to least soluble is:
- NaClO₃ > KBr > KNO₃ > NaCl.
Deutirium is the name of H-2 isotope
There are four type of intermolecular forces: ionic, dipole-dipole, hydrogen bonds and London disperssion forces.
CH4 have no ions, so there are not ionic forces.
CH4 is a symetrical molecule, so there cannot be a net dipole in the molecule, so there is not dipole-dipole interaction.
Hydrogen bonding is only possbile when H is bonded to N, O or F, beacuse they are the atoms that considerable higher electgronegativy than hydrogen.
So, the only intermolecular force present in CH4 molecules is London disperssion forces, which is a force present in any molecule and is the weakiest one. That explains the low melting and boiling points of CH4.