Answer:
Midpoint of side EF would be (-.5,4.5)
Step-by-step explanation:
We know that the coordinates of a mid-point C(e,f) of a line segment AB with vertices A(a,b) and B(c,d) is given by:
e=a+c/2,f=b+d/2
Here we have to find the mid-point of side EF.
E(-2,3) i.e. (a,b)=(2,3)
and F(1,6) i.e. (c,d)=(1,6)
Hence, the coordinate of midpoint of EF is:
e=-2+1/2, f=3+6/2
e=-1/2, f=9/2
e=.5, f=4.5
SO, the mid-point would be (-0.5,4.5)
The hyperbolic cos (cosh) is given by
cosh (x) = (e^x + e^-x) / 2
The slope of a tangent line to a function at a point is given by the derivative of that function at that point.
d/dx [cosh(x)] = d/dx[(e^x + e^-x) / 2] = (e^x - e^-x) / 2 = sinh(x)
Given that the slope is 2, thus
sinh(x) = 2
x = sinh^-1 (2) = 1.444
Therefore, the curve of y = cosh(x) has a slope of 2 at point x = 1.44
Answer:
I love algebra anyways
The ans is in the picture with the steps how i got it
(hope this helps can i plz have brainlist :D hehe)
Step-by-step explanation:
I do not know what kind of answer you may want but here is a few you might be asking for
(1). Every 12 games Alice wins 8 games and looses 4. ( 8/12 )
(2). Alice wins 2/3 games against a computer. ( 8/12 )
(3). Alice wins 66% of games she plays against a computer.
There you go.
Answer:
the first time I get to the house w the flow I can go all night w and get a