What is the probability of luis scoring 2 touchdowns?
C) what is the probability of luis scoring more than 1 touchdown?
D) what is the estimated value of the number of touchdowns luis scores? Show
Answer:
0.50
Step-by-step explanation:
P(A|B)=P(A and B)/P(B) is the formula to find a conditional probability when A and B are not independent.
A and B are independent. This means B has no effect of A. This means P(A|B)=P(A).
P(A|B)=P(A) since A and B are independent
P(A|B)=0.50
<h3><u><em>My friends the answer is:</em></u></h3><h3><u><em>If 1 lunch =$2.50
</em></u></h3><h3><u><em>
2 lunches = $5.00 (2.50x2)
</em></u></h3><h3><u><em>
3 lunches =$7.50
</em></u></h3><h3><u><em>
4 lunches =$10.00
</em></u></h3><h3><u><em>
5 lunches= $12.50
</em></u></h3><h3><u><em>
Just add $2.50</em></u></h3>
Answer:
32.66 units
Step-by-step explanation:
We are given that

Point A=(-2,-4) and point B=(1,20)
Differentiate w.r. t x

We know that length of curve

We have a=-2 and b=1
Using the formula
Length of curve=
Using substitution method
Substitute t=12x+14
Differentiate w.r t. x


Length of curve=
We know that

By using the formula
Length of curve=![s=\frac{1}{12}[\frac{t}{2}\sqrt{1+t^2}+\frac{1}{2}ln(t+\sqrt{1+t^2})]^{1}_{-2}](https://tex.z-dn.net/?f=s%3D%5Cfrac%7B1%7D%7B12%7D%5B%5Cfrac%7Bt%7D%7B2%7D%5Csqrt%7B1%2Bt%5E2%7D%2B%5Cfrac%7B1%7D%7B2%7Dln%28t%2B%5Csqrt%7B1%2Bt%5E2%7D%29%5D%5E%7B1%7D_%7B-2%7D)
Length of curve=![s=\frac{1}{12}[\frac{12x+14}{2}\sqrt{1+(12x+14)^2}+\frac{1}{2}ln(12x+14+\sqrt{1+(12x+14)^2})]^{1}_{-2}](https://tex.z-dn.net/?f=s%3D%5Cfrac%7B1%7D%7B12%7D%5B%5Cfrac%7B12x%2B14%7D%7B2%7D%5Csqrt%7B1%2B%2812x%2B14%29%5E2%7D%2B%5Cfrac%7B1%7D%7B2%7Dln%2812x%2B14%2B%5Csqrt%7B1%2B%2812x%2B14%29%5E2%7D%29%5D%5E%7B1%7D_%7B-2%7D)
Length of curve=
Length of curve=
Length of curve=
a = interest rate of first CD
b = interest rate of second CD
and again, let's say the principal invested in each is $X.
![\bf a-b=3\qquad \implies \qquad \boxed{b}=3+a~\hfill \begin{cases} \left( \frac{a}{100} \right)X=240\\\\ \left( \frac{b}{100} \right)X=360 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ \left( \cfrac{a}{100} \right)X=240\implies X=\cfrac{240}{~~\frac{a}{100}~~}\implies X=\cfrac{24000}{a} \\\\\\ \left( \cfrac{b}{100} \right)X=360\implies X=\cfrac{360}{~~\frac{b}{100}~~}\implies X=\cfrac{36000}{b} \\\\[-0.35em] ~\dotfill\\\\](https://tex.z-dn.net/?f=%5Cbf%20a-b%3D3%5Cqquad%20%5Cimplies%20%5Cqquad%20%5Cboxed%7Bb%7D%3D3%2Ba~%5Chfill%20%5Cbegin%7Bcases%7D%20%5Cleft%28%20%5Cfrac%7Ba%7D%7B100%7D%20%5Cright%29X%3D240%5C%5C%5C%5C%20%5Cleft%28%20%5Cfrac%7Bb%7D%7B100%7D%20%5Cright%29X%3D360%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cleft%28%20%5Ccfrac%7Ba%7D%7B100%7D%20%5Cright%29X%3D240%5Cimplies%20X%3D%5Ccfrac%7B240%7D%7B~~%5Cfrac%7Ba%7D%7B100%7D~~%7D%5Cimplies%20X%3D%5Ccfrac%7B24000%7D%7Ba%7D%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%20%5Ccfrac%7Bb%7D%7B100%7D%20%5Cright%29X%3D360%5Cimplies%20X%3D%5Ccfrac%7B360%7D%7B~~%5Cfrac%7Bb%7D%7B100%7D~~%7D%5Cimplies%20X%3D%5Ccfrac%7B36000%7D%7Bb%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C)

