Answer:
¨molecular compounds are formed by the sharing of electrons, and ionic compounds are formed by the transfer of electrons¨
Explanation:
C) volume
.........
The volume of gas depends on e.g. temperature and pressure.
<span>Use the van't Hoff equation:
ln
(
K2
K1
)
=
Δ
HÂş
R
(
1
T1
â’
1
T2
)
ln
(
K2
7.6*10^-3
)
=
-14,200 J
8.314
(
1
298
â’
1
333
)
ln
(
K2
7.6*10^-3
)
=
â’
1708
(
0.00035
)
ln
(
K2
0.0076
)
=
â’
0.598
Apply log rule
a
=
log
b
b
a
-0.598 =
ln
(
e
â’
0.598
)
=
ln
(
1
e
0.598
)
Multiply both sides with e^0.598
K
2
e
0.598
= 0.0076
K
e
0.598
e
0.598
=
0.0076
e
0.598
K
2
=
0.0076
e
0.598
=
4.2
â‹…
10
â’
3
K2
=
4.2
â‹…
10
â’
3</span>
Some are weaker than others it’s natural causes or they fight then d1e
Answer:
0.11%
Explanation:
Without mincing words, let us dive straight into the solution to the question/problem. The first step to solve this question is to write out the chemical reaction, that is the reaction showing the dissociation of acetic acid.
CH3COOH <=======================================> CH3COO⁻ + H⁺
Initially, the amount present in the acetic acid which is = 12M, the concentration for CH3COO⁻ and H⁺ is 0 respectively.
At equilibrium, the amount present in the acetic acid which is = 12 - x, the concentration for CH3COO⁻ = x and H⁺ = x respectively. Note that the ka for acetic acid = 1.8 × 10⁻⁵.
1.8 × 10⁻⁵ = x²/ 14 - x. Therefore, x = 0.0158 M.
The next thing to do is to calculate for the percentage of dissociation, this can be done as given below:
percentage of dissociation = x/14 × 100. Recall that the value that we got for x = 0.0158 M. Hence, the percentage of dissociation = 0.0158 M/ 14m × 100 = 0.11%