Answer:
5.71 g
Explanation:
Step 1: Write the balanced equation
2 K + Cl₂ ⇒ 2 KCl
Step 2: Calculate the moles corresponding to 12.0 g of KCl
The molar mass of KCl is 74.55 g/mol.
12.0 g × 1 mol/74.55 g = 0.161 mol
Step 3: Calculate the moles of Cl₂ needed to produce 0.161 moles of KCl
The molar ratio of Cl₂ to KCl is 1:2. The moles of Cl₂ needed are 1/2 × 0.161 mol = 0.0805 mol
Step 4: Calculate the mass corresponding to 0.0805 moles of Cl₂
The molar mass of Cl₂ is 70.91 g/mol.
0.0805 mol × 70.91 g/mol = 5.71 g
The volume of the gas that occupy at STP is 165. 28 cm^3
calculation
by use of combined gas law that is P1V1/T1=P2V2/T2, where
P1=84.6 kpa
T1=23.5 +273=296.5 K
V1=215 cm^3
At STP T= 273 K and P= 101.325 Kpa
therefore p2 = 101.325 Kpa and T2 = 272 K V2=?
by making V2 the subject of the formula V2 =T2P1V1/P2T1
V2 = 273 K x 84.6 Kpa x 215 cm^3/ 101,.325 Kpa x296.5 K =165.28 cm^3
Conversion of mole to grams
k in mole = 1 mole/ atomic mass
K in mole =1/ 39.0983 g/mole
= 0.255765 g/mole
converting 40 grams of K
K 40 grams x [ 1 mole/ 39.0983 grams] = 1.0230623 mole
There are 1.0230623 moles of K in 40 K of Potassium
Answer:
The number is mostly related to the mass or the weight of the element.
Explanation:
Answer:
By contracting, muscles pull on bones and allow the body to move. ... For example, the biceps and triceps muscles work together to allow you to bend and straighten your elbow. When you want to bend your elbow, your biceps muscle contracts (Figure below), and, at the same time, the triceps muscle relaxes.
Explanation: