<span>To find the volume of the plate without accounting for the hole firstly
V = (15.0 cm)(12.5 cm)(0.250 cm) = 46.875 cm^3
and the volume of the hole is
(pi)(1.25 cm)^2(0.250 cm) = 1.2272 cm^3
we will subtract the volume of the hole from the rest 45.648 cm^3
the multiply this by the density of the alloy to find the mass
(8.80 g/cm^3)(45.648 cm^3) = 401.701 g.
0.044% of this is Si, so (0.00044)(401.701 g) = 0.17675 g is silicon.
by the number of atoms and using average atomic mass of silicon and Avogadro's number to find the number of silicon atoms:
(0.17675 g)(1 mol/28.0855 g)(6.022E23 atoms/1 mol) =3.794E21atoms of Si
3.10% of these are Si-30:(0.0310)(3.794E18 atoms)=1.176E20 atoms of Si-30 and with two significant figures, 1.2E20 atoms.
hope this helps
</span>
Answer:
Hello There!!
Explanation:
The temperature stays the same when a solid is melting or a liquid is boiling (changing state) during a change of state, even though heat energy is being absorbed.
hope this helps,have a great day!!
~Pinky~
Answer:
Zn + CuSO4 —> ZnSO4 + Cu
Explanation:
Zn is higher than Cu in electrochemical series and so will displaces Cu in solution according to the equation:
Zn + CuSO4 —> ZnSO4 + Cu
Complete Question
You determine that it takes 26.0 mL of base to neutralize a sample of your unknown acid solution. The pH of the solution was 7.82 when exactly 13 mL of base had been added, you notice that the concentration of the unknown acid was 0.1 M. What is the pKa of your unknown acid?
Answer:
The pK_a value is
Explanation:
From the question we are told
The volume of base is 
The pH of solution is 
The concentration of the acid is 
From the pH we can see that the titration is between a strong base and a weak acid
Let assume that the the volume of acid is 
Generally the concentration of base

Substituting value


When 13mL of the base is added a buffer is formed
The chemical equation of the reaction is

Now before the reaction the number of mole of base is
![No \ of \ moles[N_B] = C_B * V_B](https://tex.z-dn.net/?f=No%20%5C%20of%20%5C%20moles%5BN_B%5D%20%20%3D%20%20C_B%20%2A%20V_B)
Substituting value

Now before the reaction the number of mole of acid is

Substituting value


Now after the reaction the number of moles of base is zero i.e has been used up
this mathematically represented as

The number of moles of acid is


The pH of this reaction can be mathematically represented as
![pH = pK_a + log \frac{[base]}{[acid]}](https://tex.z-dn.net/?f=pH%20%20%3D%20pK_a%20%2B%20log%20%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
Substituting values

Knees and elbows are two of the most common ones.