The translation of the question given is
A line that passes through the points A (2,1) and B (6,3) and another line passes through A and through the point (0, y). What is y worth, if both lines are perpendicular?
Answer:
y = 5
Step-by-step explanation:
Line 1 that passes through A (2,1) and B (6,3)
Slope (m1) = 3-1/6-2 = 2/4 = 1/2
y - 1 =
( x -2)
2y - 2 = x- 2
y = 
Line 2 passes through A (2,1) and (0,y)
slope (m2) =
Line 1 and Line 2 are perpendicular
m1*m2 = -1
*
= -1
y-1 = 4
y = 5
slope = -2
Equation of Line 2
Y-1 = -2(x-2)
y -1 = -2x +4
2x +y = 5
Answer:
(f(x) g(x)) =
all real numbers
Step-by-step explanation:
(f(x) g(x)) = 
=
via FOIL
Answer: X= 25 degrees
Step-by-step explanation:
A triangle is 180 degrees.
115+40=165
180-165=25 degrees
If you look at the rectangle properly, you can see that the diagonal creates two triangles, and if we only focus on one triangle, we can see that the bad of the triangle is 7 and the perpendicular height is 4
Using Pythagorean theorem we can figure out the hypotenuse, or the diagonal
C squared is equal to a squared plus b squared
7^2+4^2 is 65
Square root of 65 is 8.1
Answer:

Step-by-step explanation:
The standard form formula for a circle equation is
, where (h,k) represents the center of the circle, and r represents the radius.
r=10
(h,k)= (9,3)

