Answer:
Option D: 1.5in in front of the target
Explanation:
The object distance is
.
Because the surface is flat, the radius of curvature is infinity .
The incident index is
and the transmitted index is
.
The single interface equation is 
Substituting the quantities given in the problem,

The image distance is then 
Therefore, the coin falls
in front of the target
Your answer would be C, with a quick lookup of this question online lol
We have that the block is moving horizontally. Hence, its potential energy due to gravity stays the same. The only change in its mechanical energy is the one due to the change of speed. This reduction of its kinetic energy, due to the conservation of energy, is equal to the work that friction does. We have that at A the kinetic energy is : K=1/2*m*u^2=10*10*10/2=500J. At B, we have that K=1/2*10*16=80J. Sine we have that the initial value is 500, the work from the friction force (opposite to the movement of the object) is 80-500=420J.
Answer:
Just as distance and displacement have distinctly different meanings (despite their similarities), so do speed and velocity. Speed is a scalar quantity that refers to "how fast an object is moving." Speed can be thought of as the rate at which an object covers distance. A fast-moving object has a high speed and covers a relatively large distance in a short amount of time. Contrast this to a slow-moving object that has a low speed; it covers a relatively small amount of distance in the same amount of time. An object with no movement at all has a zero speed.
The debates the picture was giving you a hint
'
The debates the picture was giving you a hint " TIME " and what got finished?? The debates.