Answer:
Step-by-step explanation:
Solutions, zeros, and roots of a polynomial are all the same exact thing and can be used interchangeably. When you factor a polynomial, you solve for x which are the solutions of the polynomial. Since, when you factor a polynomial, you do so by setting the polynomial equal to 0, by definition of x-intercept, you are finding the zeros (don't forget that x-intercepts exist where y is equal to 0). There's the correlation between zeros and solutions.
Since factoring and distributing "undo" each other (or are opposites), if you factor to find the zeros, you can distribute them back out to get back to the polynomial you started with. Each zero or solution is the x value when y = 0. For example, if a solution to a polynomial is x = 3, since that is a zero of the polynomial, we can set that statement equal to 0: x - 3 = 0. What we have then is a binomial factor of the polynomial in the form (x - 3). These binomial factors found from the solutions/zeros of the polynomial FOIL out to give you back the polynomial equation.
Answer:
50°
Step-by-step explanation:
Transformation is the movement of one point from its initial location to a final location. If an object is transformed, all its points are transformed. Types of transformation is reflection, dilation, rotation and translation.
If an object is translated, it maintains its shape and size as well as the length of its sides and angles, only the location changes.
If polygon LMNP with ∠M of 50° is translated 5 units right and 4 units down to a new point, M' has the same angle measure. Hence ∠M' = 50°
Answer:
I might be able to help as long as there's no algebra involved