1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DedPeter [7]
3 years ago
8

H=-4.9(+-13)(t+2) h=-4.9(+-13)(t+2)

Mathematics
1 answer:
Arte-miy333 [17]3 years ago
5 0

Answer:

h=63.7t+127.4

Step-by-step explanation:

You might be interested in
Identify the form of the equation –3x – y = –2. To graph the equation, would you use the given form or change to another form? E
Leviafan [203]
You would want to change it to slope intercept form which is y = -3x + 2
putting it in the form you can quickly see that 2 is the y-intercept, which is where it crosses the y axis when the x value is 0.  You can also see than your slope is negative so your line will be going down.  Also, you can tell the slope of the line (rise over run)


6 0
3 years ago
Please help
Natasha_Volkova [10]

Answer:

My bad dint mean to answer :/

Step-by-step explanation:

8 0
3 years ago
Assume that the number of customers who arrive at a water ice stand follows the Poisson distribution with an average rate of 6.4
Nady [450]

Answer:

18.88% probability that three or four customers will arrive during the next 30 minutes

Step-by-step explanation:

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}

In which

x is the number of sucesses

e = 2.71828 is the Euler number

\mu is the mean in the given time interval.

Average rate of 6.4 per 30 minutes.

This means that \mu = 6.4

What is the probability that three or four customers will arrive during the next 30 minutes?

P = P(X = 3) + P(X = 4)

P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}

P(X = 3) = \frac{e^{-6.4}*(6.4)^{3}}{(3)!} = 0.0726

P(X = 4) = \frac{e^{-6.4}*(6.4)^{4}}{(4)!} = 0.1162

P = P(X = 3) + P(X = 4) = 0.0726 + 0.1162 = 0.1888

18.88% probability that three or four customers will arrive during the next 30 minutes

4 0
4 years ago
Please see image below- 8th grade math
Len [333]
Not an answer but Photo math is a good app to use to calculate to :)
4 0
3 years ago
Read 2 more answers
What is the value of x 4x-1+2x-9=152
Aleonysh [2.5K]

Rearrange:


Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :


                    4*x-1+2*x-9-(152)=0

Step by step solution :

Step  1  :

Pulling out like terms :


1.1     Pull out like factors :


  6x - 162  =   6 • (x - 27)

step 2

Solving a Single Variable Equation :


2.2      Solve  :    x-27 = 0


Add  27  to both sides of the equation :

                     x = 27

One solution was found :

                  x = 27




brainliest plzzz worked really hard on this thx god bless

5 0
4 years ago
Other questions:
  • How many numbers have absolute value a, if a>0?
    6·2 answers
  • The Davidson family wants to expand its rectangular patio, which currently measures 15 ft by 12 ft. They want to extend the leng
    12·2 answers
  • The equation d= -6t + 10 represents the distance d, in miles, Ralph walks from the library to his house in t hours. His sister,
    5·1 answer
  • What is 0.277 rounded to the nearest hundredth?
    6·2 answers
  • If the density of an object is 5.09 g/mL and the mass of the object is 5.6 g, then what is the objects volume
    7·1 answer
  • For a business meeting, Jenna is making copies of her presentation. The more people
    9·1 answer
  • Points A and B are collinear. This means that points A and B _____.
    9·1 answer
  • What is the following quotient?<br> V6+ V11<br> √5 + √3
    12·1 answer
  • Can u help me with this plz
    15·1 answer
  • A die is rolled. The set of equally likely outcomes is {1, 2, 3, 4, 5, 6}. Find the probability of getting a 9.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!