If the probability of observing at least one car on a highway during any 20-minute time interval is 609/625, then the probability of observing at least one car during any 5-minute time interval is 609/2500
Given The probability of observing at least one car on a highway during any 20 minute time interval is 609/625.
We have to find the probability of observing at least one car during any 5 minute time interval.
Probability is the likeliness of happening an event among all the events possible. It is calculated as number/ total number. Its value lies between 0 and 1.
Probability during 20 minutes interval=609/625
Probability during 1 minute interval=609/625*20
=609/12500
Probability during 5 minute interval=(609/12500)*5
=609/2500
Hence the probability of observing at least one car during any 5 minute time interval is 609/2500.
Learn more about probability at brainly.com/question/24756209
#SPJ4
Answer:
-x²+9x+4
Step-by-step explanation:
Hope this helps!
Answer:
Not sure for 1. Area might be 144. Perimeter might be 50. I got perimeter by finding slant height of the parallelogram and then substituting it to the perimeter formula (P=2(a+b) where a is a side and b is a base). I found area by just multiplying 12*12 since to find area of parallelogram, it is base x height.
2. 45, 135, 135
Step-by-step explanation:
2. We know that an isosceles trapezoid has congruent base angles and congruent upper angles, so if one base angle measures 45 degrees, the other base angle will also be 45 degrees.
For the upper angles, we know that diagonal angles are supplementary, so 180- base angle 1 (45 degrees)= upper angle 1
180-45=upper angle 1
upper angle 1 = 135 degrees
Mentioned above, upper angles are congruent, so upper angles 1 and 2 will be 135 degrees.
Check: The sum of angles in a quadrilateral is equal to 360 degrees. We can use this to check if our answer is correct.
135+135=270 degrees (sum of upper angles)
45+45= 90 degrees (sum of base angles)
270+90=360
So the angle measures of the other three angles are 135, 135, and 45.
Hope this helps!
Answer:
The correct option is D.
i.e.
is the correct option.
The correct graph is shown in attached figure.
Step-by-step explanation:
Considering the function


![\mathrm{Range\:of\:}\frac{1}{x\left(x+4\right)}:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\le \:-\frac{1}{4}\quad \mathrm{or}\quad \:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-\frac{1}{4}]\cup \left(0,\:\infty \:\right)\end{bmatrix}](https://tex.z-dn.net/?f=%5Cmathrm%7BRange%5C%3Aof%5C%3A%7D%5Cfrac%7B1%7D%7Bx%5Cleft%28x%2B4%5Cright%29%7D%3A%5Cquad%20%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3Af%5Cleft%28x%5Cright%29%5Cle%20%5C%3A-%5Cfrac%7B1%7D%7B4%7D%5Cquad%20%5Cmathrm%7Bor%7D%5Cquad%20%5C%3Af%5Cleft%28x%5Cright%29%3E0%5C%3A%5C%5C%20%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%28-%5Cinfty%20%5C%3A%2C%5C%3A-%5Cfrac%7B1%7D%7B4%7D%5D%5Ccup%20%5Cleft%280%2C%5C%3A%5Cinfty%20%5C%3A%5Cright%29%5Cend%7Bbmatrix%7D)


So, the correct graph is shown in attached figure.
Therefore, the correct option is D.
i.e.
is the correct option.
Answer: it’s C
Step-by-step explanation: