Answer:
Step-by-step explanation:
(3/8)*(8/11)=(3*8)/(8*11)= 24/88=12/44=6/22=3/11
or you can symplify 8 and get 3/11 right away.
It's A.
Rae made the error when she added 7.
the equation should be:
<span>-14 - 7 = 7x + 7 - 7 </span>
First, tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>), so if cos(<em>θ</em>) = 3/5 > 0 and tan(<em>θ</em>) < 0, then it follows that sin(<em>θ</em>) < 0.
Recall the Pythagorean identity:
sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1
Then
sin(<em>θ</em>) = -√(1 - cos²(<em>θ</em>)) = -4/5
and so
tan(<em>θ</em>) = (-4/5) / (3/5) = -4/3
The remaining trig ratios are just reciprocals of the ones found already:
sec(<em>θ</em>) = 1/cos(<em>θ</em>) = 5/3
csc(<em>θ</em>) = 1/sin(<em>θ</em>) = -5/4
cot(<em>θ</em>) = 1/tan(<em>θ</em>) = -3/4
<h3>
Answer: Choice A</h3>
- Domain: x > 4
- Range: y > 0
========================================================
Explanation:
We want to avoid having a negative number under the square root. Solving
leads to 
So it appears the domain could involve x = 4 itself; however, if we tried that x value, then we'd get a division by zero error.
So in reality, the domain is x > 4.
-------------
The range of y = sqrt(x) is the set of positive real numbers. So y > 0 is the range for this equation. Shifting left and right does not affect the range, so the range of y = sqrt(x-4) is also y > 0.
We are dividing a positive number (3) over some positive number in the denominator. Overall, the expression
is positive because positive/positive = positive.
Therefore, the range of the given equation is y > 0
-------------
The graph is shown below. We have a vertical asymptote at x = 4 and a horizontal asymptote at y = 0. The green curve is fenced in the upper right corner (northeast corner).