1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
4vir4ik [10]
3 years ago
15

(8х + 2)(7х^2 + 6x - 7) Find the product

Mathematics
1 answer:
igomit [66]3 years ago
4 0
The product is 56x^3+62x^2-44x-14
You might be interested in
Add/sub the polynomial <br><br> (1-8x^2+3x)+(1+6x^2+x)
Scorpion4ik [409]

Answer:

-2x² + 4x + 2

Step-by-step explanation:

(1-8x²+3x)+(1+6x²+x)

= 1 - 8x² + 3x + 1 + 6x² + x

= -2x² + 4x + 2  [-2(x² - 2 - 1)]

3 0
3 years ago
Use the drop down menus to complete the statements about the function p(x)=x(x-1)+1
soldi70 [24.7K]

Answer:

equal -1 plus 1 equals what

3 0
2 years ago
A chi-square test for independence is being used to evaluate the relationship between two variables, one of which is classified
AysviL [449]

Answer:

<em>Degrees of freedom for independence  in chi-square statistic</em>

<em>ν = ( r-1) (s-1) =6</em>

Step-by-step explanation:

<u><em>Explanation</em></u><u>:-</u>

Given data  chi-square test for independence is being used to evaluate the relationship between two variables

<em>Given "A" is classified into 3 categories</em>

<em>Second 'B' is classified into 4 categories</em>

In this chi-square test, we test if two attributes A and B under consideration are independent or not

We will assume that

<em>Null Hypothesis : H₀</em>: The two variables are independent

<em>Degrees of freedom in chi-square test for independence </em>

<em>ν = ( r-1) (s-1)</em>

<em>Given data 'r' = 3  and  's' = 4</em>

<em>Degrees of freedom for independence </em>

<em>ν = ( r-1) (s-1) = ( 3-1) ( 4-1) = 2×3 =6</em>

<em>Test statistic</em>

<em>                        χ ²  =  ∑  </em>\frac{(O-E)^{2} }{E}<em></em>

<em></em>

4 0
3 years ago
Integration questions .
dlinn [17]
<h2>1)</h2>

\\\\\ \textbf{a)}\\\\~~~\displaystyle \int (6x- \sin 3x) ~ dx\\\\=6\displaystyle \int x ~ dx - \displaystyle \int \sin 3x ~ dx\\\\=6 \cdot \dfrac{x^2}2 - \dfrac 13 (- \cos 3x) +C~~~~~~~~~~~;\left[\displaystyle \int x^n~ dx = \dfrac{x^{n+1}}{n+1}+C,~~~n \neq -1\right]\\\\ =3x^2 +\dfrac{\cos 3x}3 +C~~~~~~~~~~~~~~~~~~~~;\left[\displaystyle \int \sin (mx) ~dx = -\dfrac 1m ~ (\cos mx)+C \right]\\

\textbf{b)}\\\\~~~~\displaystyle \int(3e^{-2x} +\cos (0.5 x)) dx\\\\=3\displaystyle \int e^{-2x} ~dx+ \displaystyle \int \cos(0.5 x) ~dx\\\\\\=-\dfrac 32 e^{-2x} + \dfrac 1{0.5} \sin (0.5 x) +C~~~~~~~~~~~~~~;\left[\displaystyle \int e^{mx}~dx = \dfrac 1m e^{mx} +C \right]\\\\\\=-\dfrac 32 e^{-2x} + 2 \sin(0.5 x) +C~~~~~~~~~~~~~~~~~;\left[\displaystyle \int \cos(mx)~ dx  = \dfrac 1m \sin(mx) +C\right]\\\\\\=-1.5e^{-2x} +2\sin(0.5x) +C

<h2>2)</h2>

\textbf{a)}\\\\y = \displaystyle \int \cos(x+5) ~ dx\\\\\text{Let,}\\\\~~~~~~~u = x+5\\\\\implies \dfrac{du}{dx} = 1+0~~~~~~;[\text{Differentiate both sides.}]\\\\\implies \dfrac{du}{dx} = 1\\\\\implies du = dx\\\\\text{Now,}\\\\y= \displaystyle \int \cos u ~ du\\\\~~~= \sin u +C\\\\~~~=\sin(x+5) + C

\textbf{b)}\\\\y = \displaystyle \int 2(5x-3)^4 dx\\\\\text{Let,}\\~~~~~~~~u = 5x-3\\\\\implies \dfrac{du}{dx} = 5~~~~~~~~~~;[\text{Differentiate both sides}]\\\\\implies dx = \dfrac{du}5\\\\\text{Now,}\\\\y = 2\cdot \dfrac 1  5 \displaystyle \int u^4 ~ du\\\\\\~~=\dfrac 25 \cdot \dfrac{u^{4+1}}{4+1} +C\\\\\\~~=\dfrac 25 \cdot \dfrac{u^5}5+C\\\\\\~~=\dfrac{2u^5}{25}+C\\\\\\~~=\dfrac{2(5x-3)^5}{25}+C

<h2>3)</h2>

\textbf{a)}\\\\y =  \displaystyle \int xe^{3x} dx\\\\\text{We know that,}\\\\ \displaystyle \int  (uv) ~dx = u  \displaystyle \int  v ~ dx -  \displaystyle \int \left[ \dfrac{du}{dx} \displaystyle \int ~ v ~ dx \right]~ dx\\\\\text{Let}, u =x~ \text{and}~ v=e^{3x}  .\\\\y=  \displaystyle \int xe^{3x} ~dx\\\\\\~~=  x\displaystyle \int e^{3x} ~ dx -  \displaystyle \int  \left[\dfrac{d}{dx}(x)  \displaystyle \int  e^{3x}~ dx \right]~ dx\\\\\\

  =x\displaystyle \int e^{3x}~ dx  - \displaystyle \dfrac 13 \int \left(e^{3x} \right)~ dx\\\\\\=\dfrac{xe^{3x}}3 - \dfrac 13 \cdot \dfrac{ e^{3x}}3+C\\\\\\= \dfrac{xe^{3x}}{3}- \dfrac{e^{3x}}{9}+C\\\\\\=\dfrac{3xe^{3x}}{9}- \dfrac{e^{3x}}9 + C\\\\\\= \dfrac 19e^{3x}(3x-1)+C

 

<h2 />
8 0
2 years ago
I need help pls❗❗❗Its complicated ​
mel-nik [20]

Answer:

The answer to 36 is -18

Step-by-step explanation:

x=-18 because 3×(-6)=(-6×-6) cancels

3 0
3 years ago
Other questions:
  • The probability that an event will occur is 1/4. Which of the following best describes the likelihood of the event occurring?
    7·2 answers
  • HELP ME ASAP JUST GIMME ACTUAL ANSWERS PLEASE!!!!!!!!!!!!!!!!!!!!!
    11·2 answers
  • -4x - 2y = 14<br>-10x + 7y = -25<br>? I don't know how to solve systems of equations
    15·1 answer
  • Is the decimal form of 13/3 a rational number?
    5·1 answer
  • What is the slope of the line? <br> A. -2<br> B. -1/2<br> C.1/2<br> D.2
    12·1 answer
  • Keith mows lawns and it takes him 6 hours to mow 4 lawns. How many lawns could be mowed in 32 hours?
    9·2 answers
  • Write the slope intercept form of the equation given the two points. through: (1,-3) and (-3,3)
    6·1 answer
  • Find x. Round your answer to the nearest tenth of a degree
    10·1 answer
  • Look at the picture and thanks
    10·2 answers
  • (4x-7)(x+3) Find the product, answers must be in standard form
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!