Answer:
8 square units and
square units
Step-by-step explanation:
The area of the triangle ABC is 24 square units.
1. Triangles ABC and FBG are similar with scale factor
then

2. Triangles ABC and DBE are similar with scale factor
then

3. Thus, the area of the quadrilateral DFGE is

and the area of the quadrilateral ADEC is

Answer:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]: 
L'Hopital's Rule
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
We are given the limit:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D)
When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B0%7D%7B0%7D)
This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D)
Plugging in <em>x</em> = 0 again, we would get:
![\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D%20%3D%20%5Cfrac%7B0%7D%7B0%7D)
Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:
![\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D%20%3D%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-%5Bcos%5E2%282x%29%20%2B%201%5D%7D%7B%5Bcos%282x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%20%2B%20%5Cfrac%7Bcos%5E2%283x%29%20%2B%202%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D%7D%7B2cos%28x%5E2%29%20-%204x%5E2sin%28x%5E2%29%7D)
Substitute in <em>x</em> = 0 once more:
![\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-%5Bcos%5E2%282x%29%20%2B%201%5D%7D%7B%5Bcos%282x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%20%2B%20%5Cfrac%7Bcos%5E2%283x%29%20%2B%202%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D%7D%7B2cos%28x%5E2%29%20-%204x%5E2sin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
And we have our final answer.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Answer:
3 days= $105, 6 days= $90, 10 days= $70
Step-by-step explanation:
You can rewrite this equation as y=120-5x
x is the amount of days passed
plug in 3 for x and you get 15. 120-15=105
plug in 6 for x and you get 30. 120-30=90
plug in 10 for x you get 50. 120-50=70
Hope this helps!
:)
Answer:
D 5/3
Step-by-step explanation:
Secθ= Hypotenuse/Adjacent
Secθ=10/6
Simplify: 10/6 -->5/3
Ans: D 5/3
remember your six trigonometric functions:
Sinθ=Opp/Hyp -->Cscθ=Adj/Hyp
Cosθ=Adj/Hyp -->Secθ=Hyp/Adj
Tanθ=Opp/Adj-->Cotθ=Opp?Adj
It is basically the opposite of each other, don't forget when you are at the last step you simplify! never forget. Also working with square roots will be a bit tricky when converting to Csc/ Sec/ Cot. Just noting you that Square roots don't belong in denominators!
Answer: 6
Step-by-step explanation:
Because corresponding sides of similar triangles are proportional,
