1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexus [3.1K]
3 years ago
10

5x-11=24 ????????????

Mathematics
2 answers:
cluponka [151]3 years ago
7 0

Answer:

x=7

Step-by-step explanation:

5x7= 35

35-11=24

5x7-11=24

hope this helps!!!

adelina 88 [10]3 years ago
6 0

Answer:

x= 7

Step-by-step explanation:

5x-11=24

  +11   +11

5x   =  35       35/5 = 7        x=7

5(7) - 11 = 24

35 - 11 = 24

You might be interested in
What is the soultons from least to greatest (x+6)(-x+1)=0
Otrada [13]
Answer x = -6,1. hope that helped have a good day
7 0
3 years ago
Help with num 3 please. thanks​
Alja [10]

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

4 0
3 years ago
A local hamburger shop sold a combined total of 813 hamburgers and cheeseburgers on Saturday. There were 63 more cheeseburger so
Naya [18.7K]

9514 1404 393

Answer:

  375 hamburgers

Step-by-step explanation:

Let h represent the number of hamburgers. Then h+63 is the number of cheeseburgers, and the combined total is ...

  h +(h +63) = 813

  2h = 813 -63 = 750

  h = 750/2 = 375

375 hamburgers were sold on Saturday.

_____

<em>Additional comment</em>

In a "sum and difference" problem like this, the smaller number is half the difference between the sum and the difference. h = (813 -63)/2 = 375. This generic solution applies to all "sum and difference" problems.

8 0
3 years ago
Somebody please help me
Damm [24]

Answer:

3750

Step-by-step explanation:

5 0
3 years ago
Really need help please! Brainliest to correct!
vovikov84 [41]

Let's say "m" is the manufactoring cost per drill (in dollars).

Then the manufactorer sells it for $4 more, so this would be:

    m+4

Then the chain store sells it for 140% of the price is paid the manufactorer, so this would be "140% of (m+4)" which translates to "1.4•(m+4)" or more simply:

    1.4(m+4)

P(m) = 1.4(m+4), where m is the initial manufactoring cost (in dollars).

Simplifying, you could rewrite this as:

     P(m) = 1.4m + 5.6

7 0
3 years ago
Other questions:
  • the length of a rectangle is 1 inch more than twice it's width. the value of the area of the rectangle ( in square inches) is 5
    6·1 answer
  • Henry can lay a brick walkway by himself in 12 hours. Roberts does the same job in 10 hours. Working together, how long will it
    13·1 answer
  • Solve the following equations express your answers as order pair in format a,b 2x+7y=-1 and 4x-3y=-19
    11·1 answer
  • PLEASE ANSWER ASAP! 25 POINTS!
    7·1 answer
  • 1+3x=-5+x<br><img src="https://tex.z-dn.net/?f=1%20%2B%203x%20%3D%20%20-%205%20%2Bx" id="TexFormula1" title="1 + 3x = - 5 +x" a
    9·1 answer
  • Noah randomly selects one of his eight different pairs of shoes to wear each day. Of his eight pairs of​ shoes, Noah has two pai
    9·1 answer
  • 30 points!!<br><br> Please help!!!!<br><br> 7+3^2(-5+1)divided by 2
    9·2 answers
  • A well known pharmaceutical manufacturer is manufacturing a newly developed vaccine, and is concerned about variability in the i
    13·1 answer
  • What is the answer to this question
    13·1 answer
  • Hi I don't know how to do this
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!