Answer:
1.31 X 10^ -10 joules per Fe 56 atom
Explanation:
The mass of a proton is 1.673 × 10-24 g. The mass of a neutron is 1.675 × 10-24 g. The mass of the nucleus of an 56Fe atom is 9.289 × 10-23 g. What is the nuclear binding energy (in J) for 56Fe? (c = 3.00 × 108 m/s)
some of the theoretical mass will be converted to binding energy
by Einstein's famous relativity equation
E = mc^2
where E is in joules, m is in Kgm. c is in m/sec
56Fe is element 26 so it has 26 protons and 56 -26 =30 neutrons
its theoretical nuclear mass is
(26 X 1.673 X 10^-24) + (30X1.675 X 10^-24) =
(43.498 X 10^-24) + (50.250 X 10^-24)=
93.748 X 10^24 gm
but its actual mass is 9.289 X 10^-23 g or
92.289 X 10^-24 g
the mas defect is the theoretical mass minus the actual
1.459 X 10^-24 gm =^
1.459 X 10^-27 Kgm
c = 3.00 X 10* m/s=
so joules of binding energy = (1.459 X 10^-27) X 9 X10^16)
1.31 X 10^ -10 joules per Fe 56 atom
We are given with a vinegar with a hydrogen ion concentration of 0.00010 m. We are asked to express this concentration in scientific notation. The answer when expressed in scientific notation is 1x10^-4 m or molality. Answer is <span>1x10^-4 m. </span>
Answer:
Q_d=35881 J/mol
So the activation energy is 35881 J/mol.
Explanation:
Consider the following equations:


Solving the above two equation to find the Q_d in term of diffusivity and temperature we will get:

where:
Q_d is the activation energy
D_1 is the diffusivity at T_1
D_2 is the diffusivity at T_2

Q_d=35881 J/mol
So the activation energy is 35881 J/mol.
Answer:
dont know
Explanation:
what
ajjajaahhahahaahaahahqhqjqhwjahhahhqhqqhqhhqhahqah
Answer:
See explanation
Explanation:
A Lewis structure is also called a dot electron structure. A Lewis structure represents all the valence electrons on atoms in a molecule as dots. Lewis structures can be used to represent molecules in which the central atom obeys the octet rule as well as molecules whose central atom does not obey the octet rule.
Sometimes, one Lewis structure does not suffice in explaining the observed properties of a given chemical specie. In this case, we evoke the idea that the actual structure of the chemical specie lies somewhere between a limited number of bonding extremes called resonance or canonical structures.
The canonical structure of the carbonate ion as well as the lewis structure of phosphine is shown in the image attached to this answer.