The reaction is
CaC₂(s) + 2H₂O (l) -----> Ca(OH)₂ (s) + C₂H₂ (g)
As we have data of gas ethyne (or acetylene), C₂H₂
We can calculate the moles of acetylene and from this we can estimate the mass of calcium carbide taken
the moles of acetylene will be calculated using ideal gas equation
PV =nRT
R = gas constant = 0.0821 Latm/molK
T = 385 K
V = volume = 550 L
P = Pressure = 1.25 atm
n = moles = ?
n = PV /RT = 1.25 X 550 / 0.0821 X 385 = 21.75 mol
As per balanced equation these moles of acetylene will be obtained from same moles of calcium carbide
moles of calcium carbide = 21.75mol
molar mass of CaC₂ = 40 + 24 = 64
mass of CaC₂ = moles X molar mass = 21.75 X 64 = 1392g
Answer:
Acetone | CH3COCH3 - PubChem
Explanation:
Answer:
2.73 is the equilibrium constant for the dissociation of
gas at 840 degree Celsius.
Explanation:

Initial
0.600 atm 0
Equilibrium
(0.600 atm - p) 2p
Total pressure at equilibrium = P = 0.984 atm
P= 0.600 atm - p)+2p=0.984 atm
p = 0.384 atm
Partial pressure of the
gas ,
= (0.600 atm - 0.384 atm)=0.216 atm
Partial pressure of the
gas,
= 2(0.384 atm)=0.768 atm


2.73 is the equilibrium constant for the dissociation of
gas at 840 degree Celsius.
If you're including protons that are bound as part of an atomic nucleus, then, yes, under certain conditions.