Answer:
No such pair of integers. Hence, no solution.
Step-by-step explanation:
As the only factors of
58 are {
1
,
2
,
29
,
58
}
, there are no two consecutive integers whose product is 58
.
Answer:
-3·m^12·n^6
Step-by-step explanation:
We assume you intend ...
(-24·m^5·n^4)/(8·m^-7·n^-2)
= (-24/8)·m^(5-(-7))·n^(4-(-2))
= -3·m^12·n^6
_____
If you really intend what you have written, then it simplifies to ...
(-24·m^5·n^4/8)·m^-7·n^-2 . . . . . note that all factors involving m and n are in the numerator
= (-24/8)·m^(5-7)·n^(4-2) = -3n^2/m^2
Answer:
a = 3, b = 4, c = 5
Step-by-step explanation:
Assuming we're working with a right triangle, where c is the hypotenuse, then using the definition of the cosine being the adjacent side over the hypotenuse, then we know:
a = 3, because it is the side adjacent to B
b = 4, because it is the side adjacent to A
c = 5, because it is the denominator in bot fractions
This of course assumes that there is no additional ratio in place. For example, if the lengths were instead 8, 6 and 10 respectively, then the cosines given would still be 4/5 and 3/5. Truthfully these only tell relative sizes of the sides, and not their absolute sizes.
32^(-1/5)
1/32^(1/5)
^1/5 means 5√32 = 2
so the answer is 1/2 or 0.5
Answer:
150
Step-by-step explanation: