Well what is 30x3 (because that is how you would find what is one third of unknown) then you find the answer witch is 90$
Answer:
For this expression I guessed I would use subtraction because when you subtract Kimiko's miles to Celeste's miles you could see how much faster Kimiko was than Celeste.
Step-by-step explanation:
3 of anything is almost always less than 5 of the same thing.
That's true for cows, rocks, trees, fish, salt-shakers, and babies.
I can't think of any object where it wouldn't be true.
Why wouldn't it be true for tenths ?
Let me say it another way:
No. 3/10 is <em>less than</em> 5/10 .
Answer: 1) 0.6561 2) 0.0037
Step-by-step explanation:
We use Binomial distribution here , where the probability of getting x success in n trials is given by :-

, where p =Probability of getting success in each trial.
As per given , we have
The probability that any satellite dish owners subscribe to at least one premium movie channel. : p=0.10
Sample size : n= 4
Let x denotes the number of dish owners in the sample subscribes to at least one premium movie channel.
1) The probability that none of the dish owners in the sample subscribes to at least one premium movie channel = 

∴ The probability that none of the dish owners in the sample subscribes to at least one premium movie channel is 0.6561.
2) The probability that more than two dish owners in the sample subscribe to at least one premium movie channel.
= ![P(X>2)=1-P(X\leq2)\\\\=1-[P(X=0)+P(X=1)+P(X=2)]\\\\= 1-[0.6561+^4C_1(0.10)^1(0.90)^{3}+^4C_2(0.10)^2(0.90)^{2}]\\\\=1-[0.6561+(4)(0.0729)+\dfrac{4!}{2!2!}(0.0081)]\\\\=1-[0.6561+0.2916+0.0486]\\\\=1-0.9963=0.0037](https://tex.z-dn.net/?f=P%28X%3E2%29%3D1-P%28X%5Cleq2%29%5C%5C%5C%5C%3D1-%5BP%28X%3D0%29%2BP%28X%3D1%29%2BP%28X%3D2%29%5D%5C%5C%5C%5C%3D%201-%5B0.6561%2B%5E4C_1%280.10%29%5E1%280.90%29%5E%7B3%7D%2B%5E4C_2%280.10%29%5E2%280.90%29%5E%7B2%7D%5D%5C%5C%5C%5C%3D1-%5B0.6561%2B%284%29%280.0729%29%2B%5Cdfrac%7B4%21%7D%7B2%212%21%7D%280.0081%29%5D%5C%5C%5C%5C%3D1-%5B0.6561%2B0.2916%2B0.0486%5D%5C%5C%5C%5C%3D1-0.9963%3D0.0037)
∴ The probability that more than two dish owners in the sample subscribe to at least one premium movie channel is 0.0037.