Answer:
Should be 19.533333 (3 keeps repeating)
Step-by-step explanation:
if you add all the numbers up it equals
293
There are 15 points so you should just have to do 293/15
Answer:
34.43
Step-by-step explanation:
A differential of length in terms of t will be ...
dL(t) = √(x'(t)^2 +y'(t)^2)
where ...
x'(t) = 4cos(4t)
y'(t) = 7cos(7t)
The length of c(t) will be the integral of this differential on the interval [0, 2π].
Dividing that interval into 10 equal pieces means each one has a width of (2π)/10 = π/5. The midpoint of pieces numbered 1 to 10 will be ...
(π/5)(n -1/2), so the area of the piece will be ...
sub-interval area ≈ (π/5)·dL((π/5)(n -1/2))
It is convenient to let a spreadsheet or graphing calculator do the function evaluation and summing of areas.
__
The attachment shows the curve c(t) whose length we are estimating (red), and the differential length function (blue) we are integrating. We use the function p(n) to compute the midpoint of the sub-interval. The sum of sub-interval areas is shown as 34.43.
The length of the curve is estimated to be 34.43.
Answer:
Step-by-step explanation:
I am very good at Pythagorean theorem I did it this year. So A=85 E=73 S=37 L=66.5 (or 65) T=82 P=53 D=10 O=89 C=17
To do this it is actually like the easiest thing to do in math. The formula is A²+B²=C². To do this it is easier with a scientific calculator. If you don't have one you can use this online calculator: desmos.com/scientific
Step 1. get the two number and square (²) them ( multiply that number by it) For Example 30 multiplied by 30. Or on the calculator I gave you just do 30²+40²
Step 2. After that you will get 2500. Then on the calculator get this symbol √ and but the number 2500 in front of it. it should look like this. √2500.
Step 3. After that you will get 50 which is your answer. And that is how you do Pythagorean theorem.
I hope that helped you. If you don't have a scientific calculator you can use the link I provided above. If you can't use it I reccomend buying one.
Answer:
(3,2)
Step-by-step explanation:
The vertex is the highest, or lowest, point of the parabola.