Answer:
<h3>f =27</h3>
Step-by-step explanation:
![12 = f - 13-2](https://tex.z-dn.net/?f=12%20%3D%20f%20-%2013-2)
Collect like terms and simplify
![12+13+2 = f\\27 =f](https://tex.z-dn.net/?f=12%2B13%2B2%20%3D%20f%5C%5C27%20%3Df)
Switch sides
![f = 27](https://tex.z-dn.net/?f=f%20%3D%2027)
Answer:
The sample proportion of printers used in small business is:
![\hat{p}=\frac{25}{70}=0.3571](https://tex.z-dn.net/?f=%5Chat%7Bp%7D%3D%5Cfrac%7B25%7D%7B70%7D%3D0.3571)
The 95% confidence interval for the population proportion of printers that are used in small businesses is:
![\hat{p} \pm z_{\frac{0.05}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n} }](https://tex.z-dn.net/?f=%5Chat%7Bp%7D%20%5Cpm%20z_%7B%5Cfrac%7B0.05%7D%7B2%7D%7D%20%5Csqrt%7B%5Cfrac%7B%5Chat%7Bp%7D%281-%5Chat%7Bp%7D%29%7D%7Bn%7D%20%7D)
Where:
is the critical value at 0.05 significance level
![\therefore 0.3571 \pm 1.96 \sqrt{\frac{0.3571(1-0.3571)}{70} }](https://tex.z-dn.net/?f=%5Ctherefore%200.3571%20%5Cpm%201.96%20%5Csqrt%7B%5Cfrac%7B0.3571%281-0.3571%29%7D%7B70%7D%20%7D)
![0.3571 \pm 0.1122](https://tex.z-dn.net/?f=0.3571%20%5Cpm%200.1122)
![\left ( 0.3571 - 0.1122, 0.3571 + 0.1122 \right)](https://tex.z-dn.net/?f=%5Cleft%20%28%200.3571%20-%200.1122%2C%200.3571%20%2B%200.1122%20%5Cright%29)
![\left(0.245,0.469 \right)](https://tex.z-dn.net/?f=%5Cleft%280.245%2C0.469%20%5Cright%29)
Therefore, the 95% confidence interval for the population proportion of printers that are used in small businesses is (0.245 , 0.469)
Although there is no picture, I will assume this is a triangle we are talking about since the terms base and height are being used. If that is the case, the height is roughly 38.72in.
To find this, we will use the area of a triangle formula.
1/2bh = a ---> plug in known values.
1/2(12.6)(h) = 244 ---> multiply to simplify
6.3(h) = 244 ----> divide both sides by 6.3
h = 38.73
Answer:
The answer is D. (3+22)÷5