The triangle QPR having inscribed triangle STU will allow the artisan to divided his glass piece into four equal triangular pieces.
In order to divide an equilateral triangle into four equal triangular glass pieces, the artisan must;
- Take S as the mid-point on PA, T as the mid-point on PR, and U as the mid-point on QR. Thus, S, T, and U are the three mid-points on each side of the equilateral triangle QPR.
- Now, by joining these mid-points S, T, and U, four equal triangles are made(as shown in the figure).
Since the triangle is equilateral,
PQ = QR = RP
Mid-point divides the lines into equal parts. So,
PS = SQ = QU = UR = RT = TP
Thus, it is proved that
ΔPST = ΔSTU = ΔTUR = ΔQSU
Learn more about 'Equilateral Triangle' here:
brainly.com/question/2855144
Answer:
i believe 1/5
Step-by-step explanation:
Step-by-step explanation:
A/2 = 4
A = 4 x 2
A = 8
I think this should be the answer
Answer: Choice C
h(x) = -x^4 + 2x^3 + 3x^2 + 4x + 5
===========================================
Explanation:
When reflecting the function f(x) over the y axis, we replace every x with -x and simplify like so
f(x) = -x^4 - 2x^3 + 3x^2 - 4x + 5
f(-x) = -(-x)^4 - 2(-x)^3 + 3(-x)^2 - 4(-x) + 5
f(-x) = -x^4 + 2x^3 + 3x^2 + 4x + 5
h(x) = -x^4 + 2x^3 + 3x^2 + 4x + 5
Note the sign changes that occur for the terms that have odd exponents (the terms -2x^3 and -4x become +2x^3 and +4x); while the even exponent terms keep the same sign.
The reason why we replace every x with -x is because of the examples mentioned below
-----------
Examples:
The point (1,2) moves to (-1,2) after a y axis reflection
Similarly, (-5,7) moves to (5,7) after a y axis reflection.
As you can see, the y coordinate stays the same but the x coordinate flips in sign from negative to positive or vice versa. This is the direct reason for the replacement of every x with -x.
Answer:
no, it does not
Step-by-step explanation:
if it was a function, all the x values would've been different, but since 5 is repeated, it is not a function.