Answer:
<u>First figure:</u> 
<u>Second figure:</u> 
<u>Third figure:</u>
- Height= q
- Side length = r
<u>Fourth figure: </u> 
Explanation:
<u></u>
<u>A. First figure:</u>
<u>1. Formula:</u>

<u>2. Data:</u>
<u>3. Substitute in the formula and compute:</u>

<u>B. Second figure</u>
<u>1. Formula: </u>

<u>2. Data:</u>
<u>3. Substitute and compute:</u>

<u></u>
<u>C) Third figure</u>
a) The<em> height </em>is the segment that goes vertically upward from the center of the <em>base</em> to the apex of the pyramid, i.e.<u> </u><u>q </u>.
The apex is the point where the three leaned edges intersect each other.
b) The side length is the measure of the edge of the base, i.e.<u> r </u><u> </u>.
When the base of the pyramid is a square the four edges of the base have the same side length.
<u>D) Fourth figure</u>
<u>1. Formula</u>
The volume of a square pyramide is one third the product of the area of the base (B) and the height H).

<u>2. Data: </u>
- side length of the base: 11 cm
<u>3. Calculations</u>
a) <u>Calculate the area of the base</u>.
The base is a square of side length equal to 11 cm:

b) <u>Volume of the pyramid</u>:

1 = 1 x 10 exponent 0
27.5 = 2.75 x 10 exponent 1
<u><em>Answer:</em></u>
SAS
<u><em>Explanation:</em></u>
<u>Before solving the problem, let's define each of the given theorems:</u>
<u>1- SSS (side-side-side):</u> This theorem is valid when the three sides of the first triangle are congruent to the corresponding three sides in the second triangle
<u>2- SAS (side-angle-side):</u> This theorem is valid when two sides and the included angle between them in the first triangle are congruent to the corresponding two sides and the included angle between them in the second triangle
<u>3- ASA (angle-side-angle):</u> This theorem is valid when two angles and the included side between them in the first triangle are congruent to the corresponding two angles and the included side between them in the second triangle
<u>4- AAS (angle-angle-side):</u> This theorem is valid when two angles and a side that is not included between them in the first triangle are congruent to the corresponding two angles and a side that is not included between them in the second triangle
<u>Now, let's check the given triangles:</u>
We can note that the two sides and the included angle between them in the first triangle are congruent to the corresponding two sides and the included angle between them in the second triangle
This means that the two triangles are congruent by <u>SAS</u> theorem
Hope this helps :)
Answer:
Step-by-step explanation:
For the answer to the question above, I'll provide a solution for my answer below.
x^4 - 41x^2 = - 400
<span>=> x^4 - 41x^2 + 400 = 0 </span>
<span>=> x^2 = (1/2) [41 ±√(1681 - 100)] </span>
<span>=> x^2 = (1/2) (41 ± 9) </span>
<span>=> x^2 = 16 or 25
</span>
So, therefore, the answers for your problem are
<span>=> x = ± 4 or ± 5.
I hope my answer helped you. </span>