Answer:
No, because it fails the vertical line test ⇒ B
Step-by-step explanation:
To check if the graph represents a function or not, use the vertical line test
<em>Vertical line test:</em> <em>Draw a vertical line to cuts the graph in different positions, </em>
- <em>if the line cuts the graph at just </em><em>one point in all positions</em><em>, then the graph </em><em>represents a function</em>
- <em>if the line cuts the graph at </em><em>more than one point</em><em> </em><em>in any position</em><em>, then the graph </em><em>does not represent a function </em>
In the given figure
→ Draw vertical line passes through points 2, 6, 7 to cuts the graph
∵ The vertical line at x = 2 cuts the graph at two points
∵ The vertical line at x = 6 cuts the graph at two points
∵ The vertical line at x = 7 cuts the graph at one point
→ That means the vertical line cuts the graph at more than 1 point
in some positions
∴ The graph does not represent a function because it fails the vertical
line test
What is the solution set of x2 + y2 = 26 and x − y = 6? A. {(5, -1), (-5, 1)} B. {(1, 5), (5, 1)} C. {(-1, 5), (1, -5)} D. {(5,
Rus_ich [418]
He two equations given are
x^2 + y^2 = 26
And
x - y = 6
x = y +6
Putting the value of x from the second equation to the first equation, we get
x^2 + y^2 = 26
(y + 6) ^2 + y^2 = 26
y^2 + 12y + 36 + y^2 = 26
2y^2 + 12y + 36 - 26 = 0
2y^2 + 12y + 10 = 0
y^2 + 6y + 5 = 0
y^2 + y + 5y + 5 = 0
y(y + 1) + 5 ( y + 1) = 0
(y + 1)(y + 5) = 0
Then
y + 1 = 0
y = -1
so x - y = 6
x + 1 = 6
x = 5
Or
y + 5 = 0
y = - 5
Again x = 1
So the solutions would be (-1, 5), (1 , -5). The correct option is option "C".
Answer:
6.28
Step-by-step explanation:
1/2 x 3.14 x 2^2 = 6.28
The value of m is 35 degrees, because the right angle is 90 degrees, therefore, 90-55=35.
The value of t is 55 degrees because is perpendicular to the other 55 degree angle.
Answer:
are not and does not
Step-by-step explanation: