Answer:
The margin of error for the 95% confidence interval for the mean score of all such subjects is of 8.45.
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 27 - 1 = 26
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 26 degrees of freedom(y-axis) and a confidence level of
. So we have T = 2.0518
The margin of error is:

In which s is the standard deviation of the sample and n is the size of the sample.
In this question:
. So


The margin of error for the 95% confidence interval for the mean score of all such subjects is of 8.45.
Answer:
I usually explain even in the answer.
So we use som
ething called distance formula which is branched of Pythagorean theorem.
But we dont need to as it just makes it more complicated. We need to find split into 2 vectors, one vertical, and horizontal. The horizontal is 5 long.
The vertical is 1, you can find them by calculating how long is it and how tall.
Use pythogorean theorem from the formula and do 5^2+1^2 = c^2
25+1 = 26, so the answer is √26
I am pretty sure answer is right. Always take abolute value
<u>√26</u>
Answer:
93.32% probability that a randomly selected score will be greater than 63.7.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that a randomly selected score will be greater than 63.7.
This is 1 subtracted by the pvalue of Z when X = 63.7. So



has a pvalue of 0.0668
1 - 0.0668 = 0.9332
93.32% probability that a randomly selected score will be greater than 63.7.
Answer:
ac
Step-by-step explanation:
xcsddddssss
So, first you divide 75000 by 1000. Then you add 2 to each side. Then that's the answer, x=77