1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andre [41]
3 years ago
6

Sinead drives 20 miles in 30 mins what is his unit rate in miles per minute?

Mathematics
2 answers:
notsponge [240]3 years ago
7 0

Answer:

1.5

Step-by-step explanation:

30/20

sergeinik [125]3 years ago
4 0

Answer:

1.5 mpm

Step-by-step explanation:

You might be interested in
The transverse axis for this hyperbola is
garik1379 [7]

Answer:

1. horizontal

2. (2,-6)

3. (4.2,-6) and (-0.2,-6)

Step-by-step explanation:

4 0
3 years ago
Identify the solution set of the inequality using the given replacement set.
balu736 [363]
D I think hope this helps :)
5 0
3 years ago
Please Help<br><br> Simplify.<br><br> (x^4)^3
Flauer [41]

Answer:X^12

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Achilles ordered a pizza with 16 slices. Every hour, he ate half of the remaining slices. Let f(n) be the number of slices Achil
USPshnik [31]

Consider we need to find f(n).

Given:

Achilles ordered a pizza with 16 slices.

Every hour, he ate half of the remaining slices.

To find:

The function f(n) that is the number of slices Achilles ate in the hour since he got home.

Solution:

Initial number of slices = 16

Every hour, he ate half of the remaining slices. So, the number slices Achilles ate in the hour since he got home are:

8, 4, 2, 1, ...

It is a geometric sequence with first term 8 and common ratio \dfrac{1}{2}.

The explicit formula for a geometric sequence is:

f(n)=ar^{n-1}

Where, a is the first term and r is the common ratio.

Substituting a=8,r=\dfrac{1}{2}, we get

f(n)=8\left(\dfrac{1}{2}\right)^{n-1}

Therefore, the  function f(n) that is the number of slices Achilles ate in the hour since he got home is f(n)=8\left(\dfrac{1}{2}\right)^{n-1}.

4 0
3 years ago
Match each function with the corresponding function formula when h(x)=5-3x and g(x)=-3+5
Grace [21]

Answer:

k(x) = (3g + 5h)(x) ⇒ (1)

k(x) = (5h - 3g)(x) ⇒ (3)

k(x) = (h - g)(x) ⇒ (2)

k(x) = (g + h)(x) ⇒ (4)

k(x) = (5g + 3h)(x) ⇒ (5)

k(x) = (3h - 5g)(x) ⇒ (6)

Step-by-step explanation:

* To solve this problem we will substitute h(x) and g(x) in k(x) in the

  right column to find the corresponding function formula in the

  left column

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

- Lets start with the right column

# k(x) = (3g + 5h)(x)

∵ g(x) = -3^x + 5

∵ 3g(x) = 3[-3^x + 5] = [3 × -3^x + 3 × 5]

- Lets simplify 3 × -3^x

 take the negative out -(3 × 3^x), and use the rule a^n × a^m = a^(n+m)

∴ -3(3 × 3^x) = -(3^x+1)

∴ 3g(x) = -3^x+1 + 15

∵ h(x) = 5 - 3x

∵ 5h(x) = 5[5 - 3x] = [5 × 5 - 5 × 3x] = 25 - 15x

- Now substitute 3g(x) and 5h(x) in k(x)

∵ k(x) = (3g + 5h)(x)

∴ k(x) = -3^x+1 + 15 + 25 - 15x ⇒ simplify

∴ k(x) = 40 - 3^x+1 - 15x

∴ k(x) = 40 - 3^x+1 - 15x ⇒ k(x) = (3g + 5h)(x)

* k(x) = (3g + 5h)(x) ⇒ (1)

# k(x) = (5h - 3g)(x)

∵ 5h(x) = 25 - 15x

∵ 3g(x) = -3^x+1 + 15

∵ k(x) = (5h - 3g)(x)

∴ k(x) = 25 - 15x - (-3^x+1 + 15) = 25 -15x + 3^x+1 - 15 ⇒ simplify

∴ k(x) = 10 + 3^x+1 - 15x

∴ k(x) = 10 + 3^x+1 - 15x ⇒ k(x) = (5h - 3g)(x)

* k(x) = (5h - 3g)(x) ⇒ (3)

# k(x) = (h - g)(x)

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

∵ k(x) = (h - g)(x)

∴ k(x) = 5 - 3x - (-3^x + 5) = 5 - 3x + 3^x - 5 ⇒ simplify

∴ k(x) = 3^x - 3x

∴ k(x)= 3^x - 3x ⇒ k(x) = (h - g)(x)

* k(x) = (h - g)(x) ⇒ (2)

# k(x) = (g + h)(x)

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

∵ k(x) = (g + h)(x)

∴ k(x) = -3^x + 5 + 5 - 3x ⇒ simplify

∴ k(x) = 10 - 3^x - 3x

∴ k(x)= 10 - 3^x - 3x ⇒ k(x) = (g + h)(x)

* k(x) = (g + h)(x) ⇒ (4)

# k(x) = (5g + 3h)(x)

∵ g(x) = -3^x + 5

∵ 5g(x) = 5[-3^x + 5] = [5 × -3^x + 5 × 5] = 5(-3^x) + 25

∴ 5g(x) = -5(3^x) + 25

∵ h(x) = 5 - 3x

∵ 3h(x) = 3[5 - 3x] = [3 × 5 - 3 × 3x] = 15 - 9x

- Now substitute 5g(x) and 3h(x) in k(x)

∵ k(x) = (5g + 3h)(x)

∴ k(x) = -5(3^x) + 25 + 15 - 9x ⇒ simplify

∴ k(x) = 40 - 5(3^x) - 9x

∴ k(x) = 40 - 5(3^x) - 9x ⇒ k(x) = (5g + 3h)(x)

* k(x) = (5g + 3h)(x) ⇒ (5)

# k(x) = (3h - 5g)(x)

∵ 3h(x) = 15 - 9x

∵ 5g(x) = -5(3^x) + 25

∵ k(x) = (3h - 5g)(x)

∴ k(x) = 15 - 9x - [-5(3^x) + 25] = 15 - 9x + 5(3^x) - 25 ⇒ simplify

∴ k(x) = 5(3^x) - 9x - 10

∴ k(x) = 5(3^x) - 9x - 10 ⇒ k(x) = (3h - 5g)(x)

* k(x) = (3h - 5g)(x) ⇒ (6)

4 0
4 years ago
Other questions:
  • The area of a library table top is 27 1/8 Square feet the table is 3 1/2 feet wide what is the length of the table
    15·1 answer
  • A circle has an area of 50 square meters. Which answer is closest to the measure of its diameter?
    12·1 answer
  • 1) solve each equation for the indicated variable ca=rd , for a
    15·1 answer
  • 1) Calcule:
    8·1 answer
  • 3/4 times 7 i need help plz
    11·1 answer
  • Please help important!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    11·2 answers
  • I would like some help please​
    11·2 answers
  • What is the area of the figure shown?​
    5·2 answers
  • I need the answer please
    13·1 answer
  • Help me please &lt;3 ill give yall 20 points
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!