XWhich statement is true for the circumcenter of a right triangle?Which statement is true for the circumcenter of a right triangle?
Take 1 to the other side as negative
p/2=2
Take 2 to the other side and multiply it
2*2 is 4
So p is 4
Answer:
CED or AEB
Step-by-step explanation:
adjacent angles share the same vertex and one side so it will be either CED or AEB
Answer:
![P(t)=\frac{5}{2} \cdot (\sqrt{2})^t](https://tex.z-dn.net/?f=P%28t%29%3D%5Cfrac%7B5%7D%7B2%7D%20%5Ccdot%20%28%5Csqrt%7B2%7D%29%5Et)
Step-by-step explanation:
meants when
, that the value for
is 5.
So this gives us this equation:
![5=P_0 \cdot a^2](https://tex.z-dn.net/?f=5%3DP_0%20%5Ccdot%20a%5E2)
meants when
, that the value for
is 10.
So this gives us this equation:
![10=P_0 \cdot a^4](https://tex.z-dn.net/?f=10%3DP_0%20%5Ccdot%20a%5E4)
So I take equation 2 and divide it be equation 1 I get:
![\frac{10}{5}=\frac{P_0 \cdot a_4}{P_0 \cdot a_2}](https://tex.z-dn.net/?f=%5Cfrac%7B10%7D%7B5%7D%3D%5Cfrac%7BP_0%20%5Ccdot%20a_4%7D%7BP_0%20%5Ccdot%20a_2%7D)
Simplifying:
![2=a^2](https://tex.z-dn.net/?f=2%3Da%5E2)
Since the base for an exponential function can't be negative then
.
So plugging into one of my equations I began with gives me an equation to solve for the initial value,
:
![5=P_0 \cdot (\sqrt{2})^2](https://tex.z-dn.net/?f=5%3DP_0%20%5Ccdot%20%28%5Csqrt%7B2%7D%29%5E2)
![5=P_0 \cdot 2](https://tex.z-dn.net/?f=5%3DP_0%20%5Ccdot%202)
Divide both sides by 2:
![\frac{5}{2}=P_0](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B2%7D%3DP_0)
The function is:
![P(t)=\frac{5}{2} \cdot (\sqrt{2})^t](https://tex.z-dn.net/?f=P%28t%29%3D%5Cfrac%7B5%7D%7B2%7D%20%5Ccdot%20%28%5Csqrt%7B2%7D%29%5Et)
Answer:
101=10 101=1
106=1,000,000 (one million) 10-5=0.00001 (one hundred thousandth)
107=10,000,000 (ten million) 10-6=0.000001 (one millionth)
108=100,000,000 (one hundred million) 10-7=0.0000001 (one ten millionth)
Step-by-step explanation: