Answer:
F) 15/8
Step-by-step explanation:
<em>A. 17/15</em>
<em>B. 8/17</em>
<em>C. 15/17</em>
<em>D. 8/15</em>
<em>E. 17/8</em>
<em>F. 15/8</em>
Answer:
8. x = 16
9. x = 10
14.
m ∠RSU = 130°
m ∠UST = 50°
15.
m ∠RSU = 124°
m ∠UST = 56°
Step-by-step explanation:
8.
Given ∠DEF is bisected by EG. That is , ∠DEG = ∠GEF
That is , (x + 15)° = 31°
x = 31 - 15 = 16
9.
Given ∠DEF is bisected by EG. That is , ∠DEG = ∠GEF
That is ,
(6x - 4)° = 56°
6x = 56 + 4
6x = 60
x = 10
14.
13x + 5x = 180° [straight line angles ]
18x = 180
x = 10
m ∠RSU = 130°
m ∠UST = 50°
15.
4x + 12 + 2x = 180° [ straight line angles]
6x = 180 - 12
6x = 168
x = 28
m ∠RSU = 4(28) + 12 = 112 + 12 = 124°
m ∠UST = 2(28) = 56°
Answer:
(c) III
Step-by-step explanation:
If you simplify the equations and the left side is identical to the right side, then there are an infinite number of solutions: the equation is true for all values of x.
Another way to simplify the equation is to subtract the right side from both sides. If that simplifies to 0 = 0, then there are an infinite number of solutions.
__
<h3>I. </h3>
2x -6 -6x = 2 -4x . . . . eliminate parentheses
-4x -6 = -4x +2 . . . . no solutions (no value of x makes this true)
__
<h3>II.</h3>
x +2 = 15x +10 +2x . . . . eliminate parentheses
x +2 = 17x +10 . . . . one solution (x=-1/2)
__
<h3>III.</h3>
4 +6x = 6x +4 . . . . eliminate parentheses
6x +4 = 6x +4 . . . . infinite solutions
__
<h3>IV.</h3>
6x +24 = 2x -4 . . . . eliminate parentheses; one solution (x=-7)