Answer:
Step-by-step explanation:
3x-4<8
3x<12
x<4
2x+2>4
2x>2
>1
Xmin:-10 Xmax:10 and Ymir:-10 Ymax:10
Step-by-step explanation:
f(x)=2x²+3x+9
g(x) = - 3x + 10
In order to find (f⋅g)(1) first find (f⋅g)(x)
To find (f⋅g)(x) substitute g(x) into f(x) , that's for every x in f (x) replace it by g (x)
We have
(f⋅g)(x) = 2( - 3x + 10)² + 3(- 3x + 10) + 9
Expand
(f⋅g)(x) = 2( 9x² - 60x + 100) - 9x + 30 + 9
= 18x² - 120x + 200 - 9x + 30 + 9
Group like terms
(f⋅g)(x) = 18x² - 120x - 9x + 200 + 30 + 9
(f⋅g)(x) = 18x² - 129x + 239
To find (f⋅g)(1) substitute 1 into (f⋅g)(x)
That's
(f⋅g)(1) = 18(1)² - 129(1) + 239
= 18 - 129 + 239
We have the final answer as
<h3>(f⋅g)(1) = 128</h3>
Hope this helps you
401.22
Hope this helps!
May I have brainliest please? :D
Y=(-1/6)x+5
m=(y2-y1)/(x2-x1)
m=(3-6)/(12-(-6))
m=(-3)/(18)
m=-1/6
y=mx+b
y=(-1/6)x+b
6=(-1/6)(-6)+b
6=1+b
b=5
y=(-1/6)x+5