Since the two codons are for the same amino acid, the mutation doesnt change the phenotypes.
Answer:
Phosphorus is essential for growth of plants and other organisms. When concentration of phosphorus mostly from high breeding rate e.g., pigs, cattle etc. rise in water it causes severe growth of plants and algae as well as phytoplanktons. As a results layers of phosphorus start to release phosphorus as well due to positive gradient. These reactions in water are iron-redox reactions that are crucial for the release of phosphorus.
When too much phosphorus accumulates, it produces a degrading growth feedback in plants, algae and phytoplanktons that then shift toward excessive nitrogen available from fertilizers and cause a flip from P to N. Cynobacteria now dominates and denitrification as well as nitrification takes place simultaneously.
Severe eutrophication induces hypoxia in water that cause a major damage to plants biodiversity in the environment.
The primary distinction between these two types of organisms is that eukaryotic cells have a membrane-bound nucleus and prokaryotic cells do not. ... Prokaryotes, on the other hand, have no membrane-bound organelles. Another important difference is the DNA structure.
a nitrogenous base, a sugar, and a phosphate. A nucleotide is the basic subunit of both DNA bad RNA. It contains a base with nitrogen, a 5-carbon sugar and a phosphate group.
The factor that poses the greatest threat is loss of habitat. Have a nice day!