Answer:
A. Law of detachment
Step-by-step explanation:
The Law of detachment implies that when one condition is fulfilled the other cannot be and vice versa, then it is made the conclusion.
This condition is made the conclusion.
The Acute and Obtuse are detached of each other.
The acute angle is one in which the value of the angle is less than 90 degrees and obtuse angle is one in which the angle is greater than 90 degrees but less than 180 degrees.
Thus angles less than 90 degrees are acute and greater than 90 degrees are obtuse.
The conclusion of the given statement is valid based on the law of detachment as the condition has been made a conclusion.
-6 1/3 because it looks less than -6.375 which would mean that it is in fact bigger on the number scale.
Answer:
$5,172.93
Step-by-step explanation:
We're gonna use the simple interest formula: P = A(1 + r(t))
P = final amount
A = starting amount (4,678)
r = rate (0.073)
t = years (529/365)
P = 4,678(1 + 0.073(529/365))
P = 5,172.9324
Answer: Choice C) 124 square cm
------------------------------------------------------------------
Explanation:
Let's calculate the area of the trapezoid shown
b1 and b2 are the parallel bases; h is the height of the 2D trapezoid
b1 = 2
b2 = 5
h = 1.5
A = h*(b1+b2)/2
A = 1.5*(2+5)/2
A = 1.5*7/2
A = 10.5/2
A = 5.25
The area of one 2D trapezoid is 5.25 sq cm
There are two of these trapezoids that form the base faces of the trapezoidal prism. So the total base area is 2*5.25 = 10.5 sq cm
Keep this value (10.5) in mind. We'll use it later.
------------
Now onto the lateral surface area (LSA)
It turns out that the formula for the LSA is
LSA = p*d
where
p = perimeter of the trapezoid shown
d = depth or height of the 3D trapezoid (I'm not using h as it was used earlier)
This formula works for any polygonal base. It doesn't have to be a trapezoid.
In this case the perimeter is,
p = 1.7+2+2.65+5
p = 11.35
So
LSA = p*d
LSA = 11.35*10
LSA = 113.5
Add this LSA to the base area found earlier
10.5+113.5 = 124
The total surface area is 124 square cm
Answer:
f(g(x)) = 2x +(-5)
Step-by-step explanation:
Put the argument value into the function and simplify the result.
f(g(x)) = f(x -3) = 2(x- 3) +1 = 2x -6 +1
f(g(x)) = 2x +(-5)